
Green Paper
Abstract
This document outlines the rationale and main design ideas behind the consensus layer of ,
a longest-chain blockchain akin to Bitcoin. It achieves comparable security guarantees as Bitcoin's
Proof of Work (PoW) based Nakamoto consensus, while using Proofs of Space in combination
with Verifiable Delay Functions (VDFs) to achieve Sybil resistance. This makes much more
sustainable and also more decentralized than a PoW based blockchain could be.

We outline the challenges one must solve when replacing proofs of work with an efficient proof
system like proofs of space, and how they are addressed in . Here efficient means that once
the resource (like space or stake) is available, computing many proofs is basically as cheap as
computing one.

This document is not a formal specification of . Instead, it aims at readers who want to
understand the design choices of consensus, and are interested in permissionless
longest-chain blockchains from efficient proof systems in general.

Precursor Consensus Green Paper

In order to provide historical context, the Green Paper's previous version that discusses a
precursor consensus which was never implemented is available here for viewing: Precursor Green
Paper.

Chia

Chia

Chia

Chia

Chia’s

https://chiapower.org/
https://chiapower.org/
https://xch.farm/decentralization/
https://xch.farm/decentralization/
https://docs.chia.net/assets/files/Precursor-ChiaGreenPaper-82cb50060c575f3f71444a4b7430fb9d.pdf
https://docs.chia.net/assets/files/Precursor-ChiaGreenPaper-82cb50060c575f3f71444a4b7430fb9d.pdf
https://docs.chia.net/assets/files/Precursor-ChiaGreenPaper-82cb50060c575f3f71444a4b7430fb9d.pdf
https://docs.chia.net/assets/files/Precursor-ChiaGreenPaper-82cb50060c575f3f71444a4b7430fb9d.pdf
*Green Paper live version can be found here: https://docs.chia.net/green-paper-abstract/

October 8, 2024

0 - Constants, Variables and
Notation
0.1 Important Constants

Constants Description

10 minutes target duration of a sub-slot

32 blocks target number of blocks per sub-slot

16/64 blocks minimum/maximum number of blocks in a slot

4608 blocks average number of blocks per epoch

384 blocks average number of blocks per sub-epoch

64 signage points number of signage points per sub-slot

The above imply the following:

Implied
Constants

Description

1 day
target time of an epoch is

2 hours target time of sub-epoch

18.75 seconds target average block arrival time is

9.375 seconds target time between signage points is

10 min ⋅ =32 blocks
4608 blocks 1440 min (=

1day)

=32
10 min 18.75 sec

=64
600 9.375 sec

0.2 Important Variables

Variable Description

difficulty parameter. Re-calibrated once per epoch to meet target of blocks
per slot

time parameter (number of VDF steps for sub-slot). Re-calibrated once per epoch
to meet target of minutes per sub-slot

0.3 Boxes

OBJECTIVE 0:

We will use blue boxes like this one to mention key objectives we want the design of Chia to
satisfy

DESIGN CHOICE 0:

Green boxes like this are used to highlight important design choices, which often will refer
to objectives.

SECURITY NOTICE 0:

A red box stresses some important aspects required for the security of Chia, and will
typically refer to some design choice.

D ∈ N 32

T ∈ N
10

1 - Introduction
The network (chia.net) is a permissionless blockchain that was launched on March 19, 2021.

 is a "longest-chain" blockchain like Bitcoin, but uses disk-space instead of computation as
the main resource to achieve consensus. This holds the promise of being much more ecologically
and economically sustainable and more decentralized than a proofs of work (PoW) based
blockchain like Bitcoin could be. Figure 1 illustrates one slot of the blockchain. The main
aim of this document is to explain the rationale for this rather complicated design.

Figure 1: Illustration of one slot (taking around 10 minutes) of the Chia blockchain.
For illustration the slot has just 16 (instead 64) signage points and only 4 blocks (the

actual chain has a target of 32).

As mentioned, is basically what's called a longest-chain protocol in the literature [BNPW19;
BDK+19]. This notion captures blockchain protocols that borrow the main ideas from the Bitcoin
blockchain: the parties (called miners in Bitcoin and farmers in Chia) that dedicate resources
(hashing power in Bitcoin, disk space in Chia) towards securing the blockchain just need to

1. listen to the (P2P) network to learn about progress of the chain and to collect transactions.

2. locally use the resource (via proofs of work in Bitcoin or proofs of space in Chia) trying to
create a block which extends the current chain.

Chia

Chia

Chia

Chia

https://chia.net/
https://chia.net/
https://docs.chia.net/green-paper-references/#BNPW19
https://docs.chia.net/green-paper-references/#BNPW19
https://docs.chia.net/green-paper-references/#BDK19
https://docs.chia.net/green-paper-references/#BDK19

3. if a winning block is found, gossip the new block to the network.

No other coordination or communication amongst the parties is required. In particular, as the
miners in Bitcoin, the farmers in only need to speak up once they find a block and want it to
be included in the chain.

Constructing a secure permissionless blockchain using proofs of space is much more challenging
than using proofs of work. In particular, a secure (under dynamic availability) longest-
chain protocol based on proofs of space alone does not exist [BP22], so Chia's proofs of space and
time (PoST) consensus protocol, apart from farmers providing disk space, additionally relies on so
called timelords who evaluate verifiable delay functions (VDFs). Figure 2 gives an overview of the
formal security proofs and more informal arguments outlined in this document.

Figure 2: An illustration of the main security proofs and arguments for the Chia
consensus layer.

1.1 Security
The Bitcoin blockchain is secure [GKL15] as long as the hashing power (measured in
hashes per second) contributed by honest parties is larger than the hashing power
available to an adversary, i.e.,

eq.(1)

Chia

hashh

hasha

hash >h hasha

https://docs.chia.net/green-paper-references/#BP22
https://docs.chia.net/green-paper-references/#BP22
https://docs.chia.net/green-paper-references/#GKL15
https://docs.chia.net/green-paper-references/#GKL15

Similarly, the security of depends on the amount of space and controlled
by the honest parties and the adversary, respectively. Additionally, the speed and
(measured in steps per second) of the VDFs run by the fastest honest timelord and the adversary
are relevant. With these definitions,

eq.(2)

Let us stress that only requires a single timelord (which runs 3 VDFs) to be active at any
time, in particular, in eq.(2) refers to the speed of the fastest VDFs controlled by an active
and honest timelord, it doesn't matter if one or a billion timelords are active. In practice we'd still
expect a small number – not just one – timelords to be available to have a backup should the
currently fastest timelord become unavailable.

On the other hand, we make no assumptions about the number of VDFs controlled by the
adversary. Security as in eq.(2) holds even when assuming the adversary controls an unbounded
number of VDFs of speed .

This assumption comes at a prize: there's a factor by which the adversarial resources are
multiplied in eq.(2). This factor is there due to an attack we call "double dipping". This and other
attacks will be discussed in §2. For now let us just mention that there's nothing special about the
constant , it can be lowered to for any by increasing the number of blocks that
depend on the same challenge (in this is set to at least 16).

The bound in eq.(1) is not tight in the sense that we don't have an attack that works if we replace
" " with " ". We have an attack assuming giving the adversary a slightly lower boosting factor
of

eq.(3)

More concretely, if , i.e., if the adversary has (an unbounded number of) VDFs of
the same speed as the fastest honest timelord, then double spending is possible controlling

 of the total space.

A contribution of this writeup is a modular approach towards achieving secure longest-
chain blockchains from efficient proof systems. In §2 we outline three attack vectors (illustrated in

Chia spaceh spacea

vdfh vdfa

Chia is provably secure if : space ⋅h vdf >h space ⋅a vdf ⋅a 1.47

Chia

vdfh

vdfa

1.47

1.47 1 + ϵ ϵ > 0
Chia

> <
1.34

double spending in Chia possible if : space ⋅h vdf <h space ⋅a vdf ⋅a 1.34

vdf =h vdfa

≈1+1.34
100% 43%

Figure 3) that emerge if we naïvely replace proof of work with an efficient proof systems.

1.2 Network Delays
In Bitcoin each block contains the hash of the previous block. If two blocks are found at roughly
the same time, so there was no time for the block that was found first to propagate to the miner
that found the second, they will refer to the same block, and only one can be added to the chain.
The other will be "orphaned" and does not contribute towards securing the blockchain. The
fraction of orphaned blocks depends on the network delay (the smaller the delay the fewer
orphans) and the block-arrival time (fewer blocks per minute decrease the probability of
orphans). Taking this into account, the security statement for Bitcoin from eq.(1) should be
augmented to:

eq.(4)

Even with its very slow 10 minutes block arrival time, Bitcoin's orphan rate was measured to be
around [DW13]. As the chain is not a typical hash chain, but an ongoing VDF
computation where blocks are infused, there's an elegant way to avoid orphans: the "infusion
point" of a block is around seconds (more precisely, between and seconds)
worth of VDF computations after the "signage point" it must refer to, and as long as the network
delay is small enough so the block creating/gossiping process takes less than 30 seconds no
orphans will occur. In particular, the bound from eq.(2) holds under this very weak network
assumption independent of the block arrival time.

The target block arrival time in is set to seconds (32 blocks per 10 Minutes slot), and
while each of those blocks contributes to security, only a subset of these blocks actually carry
transactions (roughly , that's a block every seconds) in order to ensure that transaction
blocks sequentially refer to each other. This prevents issues with inconsistent transactions, as
each block producer knows the entire history.

1.3 Game Theoretic Aspects
Apart from proving security assuming the honest parties control a sufficient majority of the

hash ⋅h 1 − >(
block arrival time

network delay) hasha

1.6% Chia

30 28.125 37.5

Chia 18.75

36% 51.2

https://docs.chia.net/green-paper-references/#DW13
https://docs.chia.net/green-paper-references/#DW13

resources, to argue that a longest-chain protocol will be secure in the real world we need to
justify why rational parties would behave honestly in the first place. In particular, it should not be
possible to get more rewards by deviating from the honest mining/farming behavior. While
Bitcoin is not fair in this sense due to selfish mining attacks [ES18], these attacks are not really
practical and have not been observed in the wild for reasons we'll sketch below and discuss in
more detail in §3.

Fairness in

Achieving fairness that is comparable to what Bitcoin achieves is a main design goal of .
While arguing about fairness directly is rather subtle, we identify two clean properties called "no
slowdown" and "delayed gratification" a longest-chain can satisfy. Delayed gratification by itself
already is a deterrent against selfish farming, and we show (Proposition 1 in §3) that these two
properties jointly imply a chain-quality (i.e., fraction of honest blocks in the longest chain) no
worse that what Bitcoin achieves.

No-Slowdown

The no-slowdown property was identified as a desirable property for longest-chain blockchains in
[CP19]. It holds if (even an unbounded) adversary cannot slow down the growth of the chain by
participating. We discuss the no-slowdown in and various other chains in §3.5.

Delayed Gratification

The design ensures that proof of space challenges are only revealed once they are needed,
and once they're revealed they cannot be influenced any more. This then implies that it's
impossible for a selfish farmer to create more blocks by deviating from honest farming, and thus
– like in Bitcoin – the only thing a selfish farmer can do is prevent other farmers from adding their
fair share of blocks in the current epoch (potentially even losing out on blocks themself). The
reason a selfish farmer would do this is in order to enforce a lower difficulty, and thus more
rewards for themselves, in the future [ES18]. We denote chains with this property as having

"delayed gratification".1 While delayed gratification doesn't prevent selfish mining, it severely
limits the type of selfish mining possible, and we don't expect to observe selfish farming in
 for the same reasons we don't observe selfish mining in Bitcoin. As mentioned above, in
combination with the no-slowdown property it even implies a chain-quality as in Bitcoin.

Chia

Chia

Chia

Chia

Chia

https://docs.chia.net/green-paper-references/#ES18
https://docs.chia.net/green-paper-references/#ES18
https://docs.chia.net/green-paper-references/#CP19
https://docs.chia.net/green-paper-references/#CP19
https://docs.chia.net/green-paper-references/#ES18
https://docs.chia.net/green-paper-references/#ES18

1.4 Farmers and Timelords
Constructing a secure blockchain based on proofs of space is significantly more challenging than
with proof of work. So the design, as illustrated in Figure 1 is (arguably necessarily) more
sophisticated than Bitcoin or other PoW based blockchains, which are basically just hash chains.
Apart from proofs of space and standard cryptographic building blocks like hash functions and
signature schemes, the security of crucially relies on verifiable delay functions
(VDFs) [BBBF18; Pie19b; Wes20]. Informally, VDFs are functions whose computation is inherently
sequential and verifiable and thus serve as a "proof of time".

We will now shortly sketch how the blockchain is maintained by farmers and timelords.

Farmers

Farmers are the analog of miners in Bitcoin, but instead of hashing power, farmers contribute
disk-space towards securing the blockchain. As in Bitcoin, they are incentivized by block-
rewards and transaction fees. As in Bitcoin, the block-rewards (i.e., some freshly minted coins that
go to the block creator) decrease over time, but unlike in Bitcoin they will never go to zero for
reasons outlined in [CKWN16].

To participate in farming a farmer must first initalize its disk-space, this process is called plotting
and the files created and stored during this process are called plots. The smallest allowed plot in

 is slightly larger than 100GB, though for plotting one temporarily needs more than this.
Once the plot(s) are in place, a farmer just listens to the network for proof of space challenges.
There's a new challenge roughly every seconds and they are computed by a timelord as
discussed below. For efficiency reasons there's a "plot filter" which for each plot dismisses all but
(in expectation) one in 512 challenges immediately, so a plot is only accessed once every 80
minutes. The reason to not increase this time even further are so called replotting attacks which
we'll discuss in §1.8.3.

In only roughly of the blocks will carry transactions, but as a farmer doesn't know
whether their block will be a transaction block when creating the block, farmers must always
include transactions to the blocks they create.

Timelords

A timelord runs three VDFs, once every seconds they gossip a "signage point" that serves

Chia

Chia

Chia

Chia

Chia

9.375

Chia 36%

9.375

https://docs.chia.net/green-paper-references/#BBBF18
https://docs.chia.net/green-paper-references/#BBBF18
https://docs.chia.net/green-paper-references/#Pie19b
https://docs.chia.net/green-paper-references/#Pie19b
https://docs.chia.net/green-paper-references/#Wes20
https://docs.chia.net/green-paper-references/#Wes20
https://docs.chia.net/green-paper-references/#CKWN16
https://docs.chia.net/green-paper-references/#CKWN16

as a PoSpace challenge for the farmers. They also listen to the network for blocks created by
farmers. If a valid block is received in time it gets "infused" into the chain (the infusion is always
somewhere from to seconds after the signage point).

The above only holds for the the timelord which runs the fastest VDFs. Timelords with slower
VDFs can basically just recompute values that were already gossiped, so there's seemingly no
point for them to participate. We still want a small number of timelords to participate (or at least
be ready to take over) should the fastest timelord fail or misbehave.

Unlike farmers, timelords do not receive any rewards in form of block-rewards or transaction fees.
One reason is technical, unlike for farmers whose PoSpace contained in the blocks are linked to a
signature public-key to which a reward can be given, the computation of the timelords is (and to
prevent grinding attacks must be) canonical, they cannot attach a public-key to the values they
computed. A second reason is the fact that it's not clear at all how such a reward would be
distributed. If the fastest timelord gets the entire reward only they would be incentivized, but not
the slower ones we'd like to have as back-ups. If also the slower ones get something then we'd
get a PoW type lottery which we want to avoid in the first place. thus relies on a small
number of timelords to run fast VDFs without being incentivised by on-chain rewards.

1.5 Difficulty and Chain Selection Rule
Difficulty

In Bitcoin a difficulty parameter controls how many hashes are required in expectation to find
a block. This parameter is re-calibrated every 2016 blocks (called an epoch and taking roughly 2
weeks) so blocks arrive roughly every 10 Minutes.

 has two parameters, a difficulty parameter and a time parameter , these are re-
calibrated once every blocks (this epoch takes around 1 day). The time parameter is reset
to fit the target time of 10 minutes per slot, while the difficulty is reset to target an average of 32
blocks per slot.

For example if in an epoch the amount of space is higher than anticipated the difficulty for
the next epoch would get up while the time parameter remains unchanged

. If the VDF speed in the epoch is higher than anticipated (i.e., the epoch only
takes instead of hours) the time parameter goes up , and even

28.125 37.5

Chia

D

Chia D T

4608 T

10%
D :=new D ⋅old 1.1

T :=new Told 10%
24/1.1 24 T :=new T ⋅old 1.1

though the space didn't change, the difficulty needs also to go up account
for the fact that now an epoch has more VDF steps.

Chain Selection Rule

Bitcoin has a very simple chain selection rule (aka. fork choice rule) which specifies which fork a
miner should work on: a miner should always try to extend the "heaviest" chain they are aware of.
The weight of a chain is the sum of the blocks, each multiplied by the difficulty parameter used
while it was mined. Unless we consider forks which pass an epoch boundary, the heaviest chain is
also the chain with the larger number of blocks, hence the name "longest chain" protocol.

We can define the weight of a chain in analogously to Bitcoin, and currently the default
 farmer code follows basically the same "follow the heaviest chain" rule as Bitcoin miners.

But let us stress that it's not clear whether for this simple rule is the best choice. For
example, one could consider a rule for farmers where in case of a fork where both chains have
the same weight they would work on both chains (note that in a PoW based chain this is not
possible). While such a rule can slow down consensus, the observed fork could be due to an
attack (double spending or selfish mining) trying to "split" the contribution of the honest space in
two different chains, letting the farmers work on both forks would thwart this.

In we also must specify a chain selection rule for the timelords. A timelord who does not
control the fastest VDF will constantly fall behind and thus intuitively should just constantly adapt
the chain with the most VDF steps in them. But if all timelords naïvely do this a malicious timelord
controlling the fastest VDF could simply skip infusing any blocks they want, allowing for all kinds
of attacks. Thus the rule for timelords has to be more nuanced, taking into account the chains
they observe, and also blocks that were created by farmers but not infused in any of the chains.

Determining the best rules for farmers and timelords is ongoing research. Fortunately, the
rules for farmers and timelords are more of a social convention rather than a specification of the
chain. As our understanding improves, new rules can be implemented in the code base and
there's no need for a (soft) fork.

1.6 Cryptographic Building Blocks
The blockchain uses standard cryptographic building blocks, in particular hash functions
and signature schemes. More interestingly, it relies on two (non-interactive) proof systems which

D :=new D ⋅old 1.1

Chia

Chia

Chia

Chia

Chia

Chia

were especially developed for constructing sustainable blockchains: proofs of space and verifiable
delay functions. We shortly discuss the requirements has to these building blocks.

Hash Functions.

 uses SHA256 for hashing, but any collision resistant hash function would do. For efficiency
reasons, we also use the round function of CHACHA8 and BLAKE3 within the proof of space
construction where we just need some scrambling but no cryptographic hardness (not even one-
wayness).

Signatures.

 uses deterministic BLS signatures for signing. In principle any signature scheme could be
used as long as the signatures are unique, i.e., it's impossible (or at least computationally hard) to
create two different valid signatures for the same message. Uniqueness will be crucial to prevent
so called grinding attacks.

Verifiable Delay Functions.

A VDF is specified by some inherently sequential function, and a proof system for showing the
output of the function is correct. The sequential function used in the VDF deployed in is
repeated squaring in class groups of unknown order. The group is not fixed, but a fresh group is
sampled every time a value is infused. The proof system is Wesolowski's [Wes20] proof of
exponentiation which has proof of size only one group element. Only the VDF output, but not the
proofs, are committed on-chain. This has the advantage that one can replace the proofs. In the
current implementation one first computes a much larger but faster to compute proof of 64
group elements, which later is replaced by a normal (one element) Wesolowski proof. It also
means one can easily replace Wesolowski's proof with another proof system should a weakness
with this proof system (which relies on new number theoretic assumptions) be discovered. We
discuss VDFs in detail in §A.3.

Proofs of Space.

The notion of proofs of space was introduced, and a first construction proposed, in [DFKP15] (a
security proof for their construction in the random oracle model was given in [Pie19a]). This
construction, which is combinatorial and based on pebbling lower bounds for particular graphs,
has the major drawback that the initialization phase is interactive. A consequence of this is that if

Chia

Chia

Chia

Chia

https://docs.chia.net/green-paper-references/#Wes20
https://docs.chia.net/green-paper-references/#Wes20
https://docs.chia.net/green-paper-references/#DFKP15
https://docs.chia.net/green-paper-references/#DFKP15
https://docs.chia.net/green-paper-references/#Pie19a
https://docs.chia.net/green-paper-references/#Pie19a

one wants to use this PoSpace in a blockchain, the farmers must first commit to their plots before
they can be used for farming (say by recording this commitment on-chain via a special
transaction as suggested in Spacemint [PKF+18]). A new PoSpace with a non-interactive
initialization had to be developed for [AAC+17]. This construction basically just specifies
some function , and then stores its function table sorted by the outputs . On
challenge some value , the prover looks up the entry (which is efficient as the list is
sorted) and replies with the proof , which can be easily verified checking that .
Unfortunately this simple construction miserably fails to be secure: the prover can store much
less than the full function table, while still being able to efficiently find proofs. The reason are
Hellman's time-memory trade-offs, a technique proposed in 1980 to break symmetric
cryptographic schemes [Hel80]. In [AAC+17] it is shown how this simple construction can be

"salvaged" to overcome any time-memory trade-offs.2 We'll discuss definition of a PoSpace, and
the construction used in in particular, in §A.2.

1.7 A High Level View of the Protocol
The design and rationale of the blockchain is explained in the following sections, here we'll
just give a very high level view of the chain as illustrated in Figure 1. The chain itself consists of
four chains, one hash chain and three VDF chains.

Hash and VDF chains

While hash chains are a classical cryptographic construction, VDF chains were first used in .
A VDF chain alternates VDF computations with infused values. It provides the security properties
present in hash-chains, that is, the head of a chain commits its entire past (technically, given the
head of a hash or VDF chain, it's computationally infeasible to come up with two different chains
that end in that value). In addition, VDF chains come with a sequentiality property: the number of
sequential steps to compute the VDF chain is the sum of the steps required for all the VDFs in
that chain, i.e., the VDFs must be computed sequentially. Hash and VDF chains are discussed in
more detail in §4.

The four chains which constitute the blockchain are the (1) foliage chain , which is a
normal hash-chain and contains the transactions (2) the reward chain which records all
blocks (3) the challenge chain used to create PoSpace challenges and (4) the infused
challenge chain for some extra security properties. While and are normal VDF chains,

 is more of a sequence of forks from .

Chia

f (x, f(x)) f(x)
y (x, y)

x y =?
f(x)

Chia

Chia

Chia

Chia FC

RC

CC

iCC RC CC

iCC CC

https://docs.chia.net/green-paper-references/#PKF18
https://docs.chia.net/green-paper-references/#PKF18
https://docs.chia.net/green-paper-references/#AAC17
https://docs.chia.net/green-paper-references/#AAC17
https://docs.chia.net/green-paper-references/#Hel80
https://docs.chia.net/green-paper-references/#Hel80
https://docs.chia.net/green-paper-references/#AAC17
https://docs.chia.net/green-paper-references/#AAC17

Blocks

A block is made of two parts, the foliage block , which contains the payload
(transactions and a time-stamp) and the trunk block which contains a PoSpace

 and a signature .

Building the Chains

• A timelord computes the chains and broadcasts relevant values to the
network. This includes signage points and which are the values of the and

 chains (together with a proof that these values are on the VDF chains) once every
seconds.

• A farmer who receives these signage points and checks whether these points

are of interest (i.e., on the heaviest known chain) and all the VDF proofs verify. Next, for each
of their plots, they use as a challenge to compute a PoSpace . Then they check

whether satisfies a winning condition that allows to produce a block.

If a winning PoSpace is found, the farmer creates a signature of (that verifies

under the associated with) and a foliage block and then gossips the block
.

• When a timelord receives this block, they check whether the block satisfies all conditions to
be infused into the chain.

() If yes, the trunk block is infused into once its infusion point is reached, which is
somewhere between 3 and 4 signage points (28.125 to 37.5 seconds worth of VDF
computations) past the signage point of that block.

() If this happens to be the first block whose signage points are in the current slot, then
 (but not) is infused into the challenge chain at the end of the current slot. This

way the challenge chain depends only on one block per slot.

() For some extra security, the timelord doesn't simply wait till the end of the slot to
infuse the signature, but a third VDF is used to fork from at the infusion point by infusing

 into , and this fork, called the infused challenge chain , is then infused back to

 at the end of the slot.

β = {β , β }F T βF

β =T {σ, μ }rc_sp

σ μrc_sp

RC, CC, iCC, FC

rc_sp cc_sp RC

CC 9.375

rc_sp cc_sp

cc_sp σ

σ

σ μrc_sp rc_sp

pk σ βF β =
{β , β =F T {σ, μ }}rc_sp

RC βT RC

CC

μrc_sp σ CC

iCC

CC

μrc_sp CC iCC

CC

() Iff the signage point of this block is later than the infusion point of the last transaction
block, then this block is also a transaction block. Only in this case its foliage is appended
to the foliage (hash) chain , and this block becomes a "transaction block".

1.8 Space Oddities
When constructing a proof of stake or proof or a space based longest-chain protocol one faces
similar challenges due to "nothing at stake" (aka. costless simulation) issues, we'll discuss these in
§2. But there also aspects in which Space and Stake differ, and we'll shortly discuss three of them
below. The first difference is the fact that space, unlike stake, is an unsized resource, which for
example means that we can't have "certificates" [LR21]. The second difference is the fact that
stake is an internal resource, while space is an external resource, one of the consequences of this
is that a space based protocol can recover from malicious majority, while a stake based cannot.
The third are replotting attacks against space which have no analogue in the stake setting.

1.8.1 Sized vs. Unsized

A key difference between stake and work is the fact that in a stake based chain we know the
amount of the resource available for mining, while for an external resource like work or space this
is no longer the case. Lewis-Pye and Roughgarden [Lew21; LR21] formalize this as the sized vs.
unsized setting and prove some fundamental differences between them. The main result in [LR21]
shows that certificates which "provide incontrovertible proof of block confirmation", only exist in
the sized setting, i.e., for PoStake but not PoWork blockchains.

In their framework space and also space and time (i.e., the available space multiplied with the
speed of the available VDFs) as used in are an unsized resource, so we can't hope to get
certificates.

1.8.2 Internal vs. External

Work or space are actual resources and we can unambiguous talk about some party holding
some amount of the resource at some given point in time. Stake on the other hand is an internal
resource defined relative to some chain on which it is recorded and "holding some stake" usually
refers to the stake a party controls on the chain that currently is considered the valid one by
honest parties.

FC

βF

FC

Chia

https://docs.chia.net/green-paper-references/#LR21
https://docs.chia.net/green-paper-references/#LR21
https://docs.chia.net/green-paper-references/#Lew21
https://docs.chia.net/green-paper-references/#Lew21
https://docs.chia.net/green-paper-references/#LR21
https://docs.chia.net/green-paper-references/#LR21
https://docs.chia.net/green-paper-references/#LR21
https://docs.chia.net/green-paper-references/#LR21

The main advantage on using stake to secure a longest-chain protocol is the fact that it's
extremely sustainable as no external resource is required to secure the chain. But this comes at a
prize, one common argument against stake is that the chain is not really permissionless as
participating in mining requires acquiring stake from the parties currently controlling it. Also from
a security perspective an internal resource is delicate as keys controlling stake not on the current
chain can be used to attack the chain. A simple example would be an attack by which a party
acquires keys that were valid at some block in the past, but which are no longer valid at the
current block and thus are "cheap" (e.g., the party can lend a large amount of stake for a short
time, or offer to buy outdated keys), and then uses these keys to fork at block and bootstrap a
chain to the present.

To prevent such attacks some chain require parties to delete old keys, but it's irrational for a party
to delete old keys if they can be valuable in the future, say because one can sell them to an
attacker (and this is rational if one holds just little stake, so not selling is unlikely to prevent the
attack) or because there's a deep reorg and the old keys suddenly become valuable again.
Combining stake with VDFs would make such attacks harder, but not prevent them as we'll
discuss in §6

1.8.3 Replotting

A subtle but important difference between stake and space is the fact that space allows for
replotting which has no analogue in the stake setting: Given a challenge , a space farmer
controlling a plot of size can efficiently compute one proof .
This is analogous to the stake based setting, but unlike in the stake setting, the farmer can
inefficiently compute multiple proofs for challenge by repeatedly creating fresh plots and
computing one proof with each of them.

We refer to attacks exploiting this fact as replotting attacks. The most basic design choice to
harden a chain against replotting attacks is to make sure that challenges arrive at a sufficiently
high rate so that substantial replotting in-between two challenges is not feasible. Moreover the
plot filter (which dictates what fraction of plots must be accessed with every challenge) cannot be
chosen too aggressively as more aggressive filters makes potential replotting attacks easier.

A fundamental fact about PoSpace that crucially relies on replotting is that no PoSpace based
longest-chain protocol secure under dynamic availability exists [BP22], we'll discuss their result in
more detail in §6.2.3. overcomes this no-go theorem by using VDFs, we discuss security
under dynamic availability and healing from malicious majority in the work, stake and space

Bi

Bi

c

S N σ ← PoSpace.prove(S, c)

c

Chia

https://docs.chia.net/green-paper-references/#BP22
https://docs.chia.net/green-paper-references/#BP22

setting in §6.

Footnotes

1. According to Wikipedia, delayed gratification is the resistance to the temptation of an
immediate pleasure in the hope of obtaining a valuable and long-lasting reward in the long-
term.

2. The crucial observation that makes this possible is the fact that Hellman's attack assumes
that can be efficiently computed in forward direction, while for a PoSpace we just
require that the entire function table of can be computed in time linear in the size of
the table.

f(.)
f(.)

2 - Longest-Chain Protocols
from Efficient Proof Systems
Before we can outline the specification of the blockchain and its rationale in more detail, we
first must understand the general challenges one faces when constructing a PoSpace based
blockchain and some of the relevant literature on how to address these challenges.

Ultimately, we want to argue security assuming only that sufficient fraction of the resource
(space, fast VDFs) is controlled by rational parties. Towards this, in this Section we first discuss
how to achieve security assuming sufficiently many parties are honest, and then in §3 how
rational behavior is incentivized by ensuring that deviating from the protocol will not give any (or
very little) extra reward to parties.

Chia

Figure 3: Illustration of the three main attack vectors that arise if we replace PoW
with proofs of space (or any other efficient proof systems) in Bitcoin, and how they

are addressed in Chia.

As mentioned in the introduction, just replacing proofs of work in Bitcoin with proofs of space
does not work. For one thing, there are syntactic differences between proofs of work and proofs
of space. But more importantly, security breaks down if one replaces PoW with PoSpace in any
straight forward way. The reason for this is the fact that for PoSpace (after plotting) it's extremely
cheap to compute a proof for a given challenge. The analogue issue with proof of stake is
sometimes called "nothing at stake". We'll refer to proof systems where proofs can be efficiently
computed (like proofs of space or stake) as efficient, and describe three attack vectors that arise
because of this issue: grinding, double-dipping and bootstrapping. Those are illustrated in Figure
3 and described below. In §5 we'll describe how those attacks are addressed in in more
detail.

2.1 Grinding
In longest-chain blockchains the challenge used to determine the miner/farmer who can add a
block is derived from the chain itself. In Bitcoin, where the challenge for a block is simply the hash
of the previous block, a miner can influence the PoW challenge by trying out different transaction
sets or time stamps. While such "grinding" through different challenges gives no advantage in
PoW based cryptocurrencies, it's a problem once we use an efficient proof system.

To prevent such grinding we adopt an approach from Spacemint [PKF+18] and split the chain in
two parts which we'll call trunk and foliage. The trunk contains only canonical proofs, and the
challenges depend only on values contained in the trunk. This way the only choice a farmer has
to influence the challenge is by withholding a winning block. The foliage contains all the
remaining "grindeable" content, in particular transactions and time-stamps.

2.2 Double-Dipping
Even once grinding is no longer an option, an adversary can in private create an entire "block-
tree" by forking at each level. While each path in such a tree will have an exponentially small (in
the depth) probability of overtaking the honest chain if the adversary controls less than half the

Chia

https://docs.chia.net/green-paper-references/#PKF18
https://docs.chia.net/green-paper-references/#PKF18

resources, there's also an exponential number of paths, so it's not clear how much of an
advantage this strategy gives. For constructions where each challenge depends on the previous
block (as in Bitcoin), it was shown [CP19] that this strategy "boosts" the resource by a factor

, in particular, with this strategy an adversary (having an unlimited number of VDFs whose
speed matches the fastest honest time lord) can create a chain that is longer than the honest one
with only a fraction of the total space, and thus significantly less than the

 fraction (of hashing power) required in Bitcoin.

To limit the impact of double-dipping an early version [CP19] of consensus specified that
also the honest parties do a very limited form of double-dipping and try to extend the best
blocks they see at every depth, this rule was (by simulations) shown to increase the space
required by an adversary from the mentioned above, to .

The deployed protocol uses correlated randomness to limit the impact of double dipping.
This elegant idea was introduced in [BDK+19], and basically suggest to only use every th block

to compute the challenges.1 The authors of [BDK+19] determine the exact fraction of the resource
the adversary must control to break security as a function of (as mentioned, it's for

, and goes to as increases). uses a variant where a challenge depends on one out of at
least (not exactly) blocks. Their analysis also applies to this setting, and with
states that by double dipping the adversary can boost their resource by a factor of , which
means they must control at least a fraction of the resource for an attack.

The resource considered in [BDK+19] is simply stake, while in it's the product of space and
VDF speed. Concerning VDFs, while for the honest parties the only thing that matters is the speed
of the three VDFs controlled by the fastest honest time lord, for an adversary the speed as well as
the number of VDFs available to them matter. In the security analysis we can simply assume the
adversary controls an unbounded number of VDFs, as that's when the analysis from [BDK+19]
applies. This is how eq.(2) in §1.1 was derived.

2.3 Bootstrapping
A major issue with longest-chain blockchains based on efficient proof systems is bootstrapping
(aka. costless simulation) by which an adversary can use its resource to create a chain at basically
no cost. Such bootstrapping can be used for short range attacks like selfish mining, but also long
range attacks where an adversary forks the chain at a point in the past and then "bootstraps" it
into the present. Such long range attacks make it hard to achieve security under dynamic

e ≈
2.718

1/(1 + e) ≈ 0.269
0.5

Chia

3

26.9% 38.5%

Chia

k

k 2.718 k =
1 1 k Chia

k = 16 k = 16
1.47

=1+1.47
1 0.405

Chia

space ⋅h vdf >h space ⋅a vdf ⋅a 1.47

https://docs.chia.net/green-paper-references/#CP19
https://docs.chia.net/green-paper-references/#CP19
https://docs.chia.net/green-paper-references/#CP19
https://docs.chia.net/green-paper-references/#CP19
https://docs.chia.net/green-paper-references/#BDK19
https://docs.chia.net/green-paper-references/#BDK19
https://docs.chia.net/green-paper-references/#BDK19
https://docs.chia.net/green-paper-references/#BDK19
https://docs.chia.net/green-paper-references/#BDK19
https://docs.chia.net/green-paper-references/#BDK19
https://docs.chia.net/green-paper-references/#BDK19
https://docs.chia.net/green-paper-references/#BDK19

availability, where we assume that the honest parties control a majority of the resource at any
point in time, but the total resource can vary over time. The amount of hashing power
contributed towards securing Bitcoin has varied by many orders of magnitude in the past, and
the same already happened to in the first weeks after launch.

Figure 4: Illustration of the no slowdown and delayed gratification properties. A
longest-chain blockchain satisfying these properties is no more susceptible to selfish

mining than Bitcoin.

Existing proposals to achieve security under such dynamic availability include check-pointing,
which is problematic as parties that join for the first time or have not followed the chain for a
longer period need additional trust assumptions to decide which chain to follow. Unlike for
grinding and double-dipping, the attacks that become possible due to bootstrapping are quite
different for proofs of space and proofs of stake. In the latter one must consider old keys that
hold no stake in the current chain, but still can be used to bootstrap from a past block. To
address this it was suggested to have honest parties use key-evolution schemes [BGK+18] so the
current keys cannot be used to create blocks in the past. Key-evolution is problematic as it's
clearly not rational for honest parties to do; they could sell their keys or lose their stake in case of
a deep reorg.

The essence of the bootstrapping problem is the fact that one cannot ensure that time has
passed in-between the creation of subsequent blocks. solves this problem by combining
proofs of space with proofs of time, concretely, verifiable delay functions (VDFs), which enforce
that some inherently sequential computation (which requires time linear in the length of the
computation) was performed in-between the creation of blocks. combines those three
countermeasures (splitting the chain, correlated randomness and proofs of time) into a single
design which is secure if the resources controlled by the honest parties satisfy the bound from
Eq.

Footnotes

Chia

Chia

Chia

https://docs.chia.net/green-paper-references/#BGK18
https://docs.chia.net/green-paper-references/#BGK18

1. Using the same challenge for blocks has already been suggested in [PKF+18], but this
is a different requirement (as the challenge can still depend on all blocks) and adds much
less security than correlated randomness for small .

k > 1

k

https://docs.chia.net/green-paper-references/#PKF18
https://docs.chia.net/green-paper-references/#PKF18

3 - Rational Attackers
In §2 we discussed how costless simulation opens attack vectors for double spending in longest-
chain blockchains and how these are addressed in . To show security we assumed that a
sufficient fraction of the resource is controlled by honest parties who follow the protocol rules. In
reality it's unrealistic to assume that parties will behave altruistically, instead we need to argue
that it's rational for parties to follow the protocol rules. Unfortunately costless simulation also
makes this task much more challenging than in a PoW based system.

In analogy to selfish mining in Bitcoin, we refer to strategies by which a party gets more rewards
than they would by following the protocol rules as selfish farming. To argue that rational parties
will behave honestly it's necessary to bound the efficacy of selfish mining/farming strategies.

In §3.1 below we first discuss selfish mining and why we don't observe it in Bitcoin even though
it's possible in principle. As directly analyzing the security of a longest-chain protocol against
selfish mining/farming is very challenging we take a modular approach. In §3.2 we first identify
two properties – no slowdown and delayed gratification illustrated in Figure 5 – which are satisfied
by Bitcoin, and then show in §3.3 that they imply robustness against selfish mining (through the
notion of chain quality) of the level as achieved by Bitcoin. In §3.4 and §3.5 we then sketch how
those notions are achieved in .

3.1 Selfish Mining in Bitcoin
While Bitcoin prevents double spending assuming a majority of the hashing power is controlled
by miners who altruistically follow the protocol, it allows for selfish mining [ES18] by which a
miner with a fraction of the hashing power can create more than an fraction of the
blocks and thus gets an unfair share of the block rewards. In some settings this fraction can be as

large as (e.g. a fraction for).1 Selfish mining has not been observed
in Bitcoin, and there are various reasons why this is the case

1. selfish mining requires either a fairly large fraction of the hashing power or very good

control of the network (cf. Footnote 1) to be profitable

2. the attack would be easily detected and

Chia

Chia

α < 0.5 α

α/(1 − α) 0.33 α = 0.25

https://docs.chia.net/green-paper-references/#ES18
https://docs.chia.net/green-paper-references/#ES18

3. delayed gratification as defined below.

3.2 Delayed Gratification and No Slowdown
The Bitcoin blockchain is split in epochs, each with a targeted duration of two weeks, and only at
the end of an epoch the difficulty is reset to accommodate for the variation of the hashing power.
Assuming the network is reliable, within an epoch, a selfish miner cannot create more blocks than
they would get by honest mining. This follows from a crucial property of proofs of work: there's
no way to find more proofs of a given difficulty (and thus blocks) in a given time window than
simply following the protocol and always working on the known longest chain. The only thing
selfish mining does in Bitcoin is to make honest parties waste their hashing power, so after the
next difficulty reset (which only happens every 2 weeks) the difficulty is lower than it should be,
and only at this point the selfish miner makes some extra profit. Another property of PoW based
chains like Bitcoin is that an adversary cannot slow down chain growth. We capture these two
desirable properties separately below.

Delayed Gratification: A chain where an adversary cannot increase the number of blocks they
find in expectation within an epoch of same difficulty by deviating from the honest strategy is
said to have the delayed gratification property. In , by "not deviating" we mean that the
adversary simply runs an honest farmer using its available space, and additionally, should the
adversary control VDFs that are faster than the fastest honest time lord, they are also assumed to
run a time lord. Intuitively, delayed gratification is a good deterrent to selfish mining by itself as it
limits selfish mining to adversaries who follow a "long term" agenda.

No Slowdown: A chain where an adversary (no matter what fraction of the resource they control)
cannot slow down the expected block arrival time by interacting with the chain is said to have the
no slowdown property.

3.3 Chain Quality
A longest-chain blockchain is said to have chain quality if the fraction of blocks mined by
honest miners is at least (with high probability and considering a sufficiently large number of
blocks). Chain quality was introduced in [GKL15] as a metric to quantify how susceptible a chain is
to selfish mining. Ideally, assuming an adversarial miner who controls an fraction of the
resource, the chain quality should be as this means that the adversary cannot

Chia

ρ

ρ

α

ρ = 1 − α

https://docs.chia.net/green-paper-references/#GKL15
https://docs.chia.net/green-paper-references/#GKL15

increase its fraction of blocks by deviating.

By the Proposition below delayed gratification and the no slowdown property imply a bound on
chain quality which matches the bound proven for Bitcoin (when ignoring network delays).

Proposition 1 (Delayed Gratification and No Slowdown implies Chain Quality). Consider a
longest-chain protocol which has the delayed gratification and no slowdown property against an
adversary who controls an fraction of the global resource, then the chain quality is

(compared to the ideal).

Proof. Consider an adversarial miner with an fraction of the resource and let denote the
(expected) number of blocks to be found if everyone would mine honestly. By the no slowdown
property, no matter what does the number of blocks found is at least . By
delayed gratification, at most of those blocks were created by , we get a chain quality of

3.4 Delayed Gratification in Chia
Having motivated why the no slowdown and delayed gratification properties are useful, in this
and the next section we will sketch how they are achieved in Chia. Recall that delayed
gratification means a selfish farmer cannot add more blocks into the chain than he could by
honestly following the protocol. To achieve this in we ensure that

OBJECTIVE 1: UNPREDICTABLE AND IMMUTABLE CHALLENGES

(a) a challenge is revealed as late as possible.

α 1 − 1−α
α

1 − α

A α ℓ

A ℓ ≥′ (1 − α) ⋅ ℓ
α ⋅ ℓ A

chain quality =
total blocks

honest blocks

=
ℓ′

ℓ − α ⋅ ℓ′

= 1 −
ℓ′

α ⋅ ℓ

≥ 1 −
(1 − α) ⋅ ℓ

α ⋅ ℓ

= 1 − □
1 − α

α

Chia

(b)) once it's revealed, it's almost certainly too late for a selfish farmer to influence it in any
way.

(c)) whether a plot can produce a block for a challenge only depends on the plot and the
challenge (and not say, on what other plots exist).

These properties imply delayed gratification as a selfish farmer cannot do anything to influence
challenges in a controlled way due to (a) & (b), and cannot do anything to increase its number of
winning blocks for a given challenge due to (c).

We will sketch how properties (a)-(c) are achieved in next. To follow the arguments the
reader might want to recap the high level outline in §1.7 and illustration in Figure 1

(a) The only reason for the infused challenge chain is to make sure that the challenge
becomes known as late as possible, in particular when considering an adversary with a faster VDF
than the fastest honest time lord.

(b) We infuse the first block of each slot into the challenge chain , this way making sure that
this block is buried deep in the chain (by blocks on average) once revealed, and thus almost
impossible to revert.

(c) We use a variation on the correlated randomness technique from [BDK+19], where we let the
challenge depend on every th challenge on average, rather than exactly. This way only the
challenge determines whether a plot can produce a winning block, irrespective of what other
plots exist.

3.5 No-Slowdown of Chia and other
Constructions {#s:nschia}
Recall that the no slowdown property requires that no adversary can slow down the block arrival
time by participating.

3.5.1 No-Slowdown in Bitcoin

In Bitcoin no slowdown holds as whenever an honest miner finds a block, all the honest miners
will switch to a heavier chain. An adversary can still kick out this block and replace it with one of

Chia

iCC

CC

31

k

https://docs.chia.net/green-paper-references/#BDK19
https://docs.chia.net/green-paper-references/#BDK19

his own (and that's what selfish mining is exploiting), but not slow down the growth. Of course
here we assume a reliable network, a network level attacker who can increase the latency or even
split the network can of course delay chain growth.

3.5.2 A Non-Example, the G-Greedy-Rule

One might assume that the no-slowdown property would be achieved by any "natural" longest-
chain blockchain even if based on efficient proof systems. Unfortunately this intuition is wrong. A
design for which no-slowdown fails to hold is the proof of stake based chain of Fan and
Zhou [FZ17]. Their chain mimics Bitcoin's Nakamoto consensus using proofs of stake, but to
harden the design against (what in this writeup is called) double dipping attacks [FZ17] suggest
the miners not only extend the longest chain, but instead follow the " -greedy rule": a miner
should try to extend all forks they see which are at most blocks shorter than the longest chain
they've seen so far. The rationale behind this rule is that by letting the honest miners do double-

dipping to some extent, the advantage an adversary can get by double dipping shrinks.2 As
shown in [BDK+19], this design has some serious issues as an adversary with relatively small
resources can with high probability prevent the chain reaching consensus by strategically
releasing blocks and this way keep two forks alive for a long time. An illustration of their attack is
in Figure 5. Interestingly (citing [BDK+19]) "..the efficacy (of the attack) is primarily achieved by
slowing down the growth rate of the honest strategy."

Figure 5: Illustration of the balancing attack against [FZ17] taken from [BDK+19]

3.5.3 Examples of No-Slowdown.

g

g

https://docs.chia.net/green-paper-references/#FZ17
https://docs.chia.net/green-paper-references/#FZ17
https://docs.chia.net/green-paper-references/#FZ17
https://docs.chia.net/green-paper-references/#FZ17
https://docs.chia.net/green-paper-references/#BDK19
https://docs.chia.net/green-paper-references/#BDK19
https://docs.chia.net/green-paper-references/#BDK19
https://docs.chia.net/green-paper-references/#BDK19
https://docs.chia.net/green-paper-references/#FZ17
https://docs.chia.net/green-paper-references/#FZ17
https://docs.chia.net/green-paper-references/#BDK19
https://docs.chia.net/green-paper-references/#BDK19

The lesson from the example above is that the no-slowdown property is not easy to achieve in
longest-chain protocols using efficient proof systems. Moreover the absence of this property can
lead to various security issues, not just selfish mining opportunities, but even prevent consensus
almost indefinitely as in the example above. Similar attacks were also proposed for BFT type
protocol, most notably Ethereum [SNM+21].

Naïve Emulation of Bitcoin

There are longest-chain blockchains from efficient proof systems which do have the no-
slowdown property. The simplest is to just emulate Bitcoin by replacing PoW with PoSpace or
PoStake. While satisfying no-slowdown, this basic construction has all the security issues
discussed in §2. Fixing bootstrapping and grinding as outlined in §2 will preserve the no-
slowdown property. The challenge is to find a good countermeasure to double-dipping without
losing the no-slowdown property and introducing new attack vectors.

-Distance Greedy

Bagaria et al. [BDK+19] not only prove that -greedy does not have the no-slowdown property,
but also suggest a different rule of a similar flavour they call " -distance greedy", for which the
no-slowdown property does hold [BDK+19 Lemma 12]. This rule reduces the double-dipping
advantage factor towards as increases, but already for moderately large it becomes
computationally infeasible for the miners to even determine which chain to follow.

Old

The first Chia greenpaper [CP19] has a very simple rule where honest farmers try to extend the
first (was suggested) chain of any given length they become aware of. For this
simple construction the advantage factor of double-dipping goes to as increases while it
does achieve no-slowdown [CP19 Lemma 4].

While the deployed blockchain has many advantages over the old [CP19] proposal, the no-
slowdown property is a much tricker issue in the new design. In particular, we do not yet have an
analogue of [CP19 Lemma 4] which basically states that even an unbounded adversary (unlimited
space, unlimited number of arbitrary fast VDFs) cannot slow down chain growth.

D

g

D

1 D D

Chia

k > 1 k = 3
1 k

Chia

Chia

https://docs.chia.net/green-paper-references/#SNM21
https://docs.chia.net/green-paper-references/#SNM21
https://docs.chia.net/green-paper-references/#BDK19
https://docs.chia.net/green-paper-references/#BDK19
https://docs.chia.net/green-paper-references/#BDK19
https://docs.chia.net/green-paper-references/#BDK19
https://docs.chia.net/green-paper-references/#CP19
https://docs.chia.net/green-paper-references/#CP19
https://docs.chia.net/green-paper-references/#CP19
https://docs.chia.net/green-paper-references/#CP19
https://docs.chia.net/green-paper-references/#CP19
https://docs.chia.net/green-paper-references/#CP19
https://docs.chia.net/green-paper-references/#CP19
https://docs.chia.net/green-paper-references/#CP19

When analyzing the no-slowdown property, it is useful to distinguish the specification of the
chain (i.e., what constitutes a valid chain) and its chain selection rule (aka. fork choice rule), which
tells the farmers and time lords on which chains to work should competing forks exist.

For example the difference in the -greedy and the -distance greedy protocols discussed
above (only the latter having the no-slowdown property) is only in the chain selection rule, the
specification what constitutes an valid chain is the same.

Unlike the chain specification, which can only be changed by a hard fork once the chain is
deployed, the chain selection rule can easily be adapted by the farmers and/or time lords even
after the launch. Finding a chain-selection rule for the chain which provably achieves no-
slowdown is an interesting open problem.

Under the additional assumption that an adversary does not control VDFs which are faster than
the fastest honest time lord, a very simple chain selection rule achieving no-slowdown exists:
always follow the chain with accumulated most VDF steps. Of course this rule would be terrible in
practice as security completely breaks if the adversary has an even slightly faster VDF than the
fastest honest time lord. For example, such an adversary could create an "empty" chain by
refusing to infuse any blocks.

A more sensible rule is to simply follow the heaviest fork like in Bitcoin. Unfortunately, unlike in
Bitcoin, in the heaviest fork is not necessarily the fork which will be heaviest in the future
assuming all honest parties adapt it: a fork might have one more block infused than some fork

, but if is way ahead in the VDF computation extending might give a better chain (in
expectation) in the future. Thus, when using this rule, by releasing an adversary might slow
down the chain. The currently deployed chain selection rule for farmers and time lords is basically
to follow the heaviest fork, but with some heuristics to avoid clear cases where switching to a
heavier chain is slowing down growth.

Footnotes

1. To achieve such a large fraction we must assume that (1) honest miners follow the (original
Bitcoin) rule and in case they learn of two longest chains they always try to extend the one
they saw first and (2) that once the selfish miner learns about a block mined by the honest
miners, they can release a withheld block such that their block reaches most of the honest
miners faster than this honest block. If either of these conditions is not met, selfish mining is
much less profitable, and only becomes profitable at all for selfish miners who control a fairly

g D

Chia

Chia

A

B B B

B

large fraction of the resource [SSZ15]. 2

2. A similar proposal, where the honest parties try to extend the first blocks they see at every
depth was proposed in an early proposal for (with) [CP19]. This variant achieves
the no-slowdown property.

k

Chia k = 3

https://docs.chia.net/green-paper-references/#SSZ15
https://docs.chia.net/green-paper-references/#SSZ15
https://docs.chia.net/green-paper-references/#CP19
https://docs.chia.net/green-paper-references/#CP19

4 - Hash and VDF chains
A key ingredient in longest-chain blockchains are hash-chains as discussed in §4.1 below. While

 also uses a hash-chain (for the foliage chain), for we use a new chaining structure
called a VDF chain defined in §4.2 below.

4.1 Hash chains
For this writeup, a hash chain is a sequence of blocks, where each block

 contains some data value (possibly empty) and (with the exception of) a hash
value of the current data and the previous block.

Security from hash chains.

A hash chain is immutable in the following sense:

Proposition 2 (immutability of hash chains). If is a collision-resistant hash function, then it is
computationally infeasible to find two distinct hash chains and

where and no chain is a prefix of the other (which holds if they start with the same

).

4.2 VDF chains

Figure 6: Illustration of a VDF chain.

Chia FC Chia

b , b , b …0 1 2 b =i

{h , x }i i xi b0

h :=i H(b , x)i−1 i

H

H = b , … .b0 i H =′ b , … , b0
′

j
′

h =i hj
′ x =0

x0
′

A VDF chain is a sequence

eq.(5)

alternating data values and VDF values (as described in
§A.3). The chain is valid if all VDF proofs are correct

and the challenge for the th VDF is derived from the previous VDF output (except for) and
data value

where we use the convention that is the empty string.

4.2.1 Notation for VDF chains

We naturally extend the notion for VDFs as described in §A.3 to VDF chains. The total number of
VDF steps in a VDF chain as in eq.(5) is simply the sum of the steps in its VDFs

Security from VDF chains.

VDF chains give two basic security guarantees, the first is immutability analogous to hash chains,
but also sequentiality inherited from the underlying VDF, we discuss them shortly in more detail.

Proposition 3 (immutability and sequentiality of VDF chains). Like a hash chain, a VDF chain is
immutable in the sense that it's computationally infeasible to come up with two different VDF
chains

where the last VDF outputs collide, i.e., . Here different means that either they have
different length and neither is a prefix of the other. Or (if) there exists an s.t.

V = z , τ , z , τ , z , … , τ0 1 1 2 2 ℓ

z ∈i {0, 1}∗ τ =i (τ .y, τ .π, τ .c, τ .t)i i i i

VDF.verify(τ) =i accept

i i = 1

τ .c :=1 VDF.sample(z) and ∀i >0 1 : τ .c :=i VDF.sample(τ .y, z)i−1 i−1

τ .y0

V.t =def
τ .t

i=1

∑
ℓ

i

V = z , τ , z , τ , z , … , τ V =0 1 1 2 2 ℓ
′ z , τ , z , τ , z , … , τ0

′
1
′

1
′

2
′

2
′

ℓ′
′

τ .y =ℓ τ .yℓ′
′

ℓ = ℓ′ ℓ = ℓ′ i

either or or . Note that we ignore the proofs when
comparing chains (we just use them to determine whether the chain is valid) as they must not be
unique.

Moreover a VDF chain is sequential, meaning that not only the individual VDFs must be
computed sequentially (which follows from the security definition of VDFs), but also the VDFs in
the chain were computed sequentially. I.e., computing a chain as above requires
sequential steps.

z =i  zi
′ τ .y =i  τ .yi

′ τ .t = τ .t′ τ .π

V τ .t∑i=1
ℓ

i

5 - The Blockchain
In this section we finally outline the design of the blockchain as illustrated in Figure 1 from
its basic building blocks PoSpace, VDFs and Signatures. These primitives are specified in §A. We'll
use greek letters to denote PoSpace, for VDFs and for Signatures.

Figure 7: The reward, challenge and infused challenge chains. For illustration we only
use 8 not 64 signage points per sub-slot.

5.1 Additional Variables and Notation for this
Section

5.1.1 Variables

Variable Definition

Time parameter of -th slot (# of VDF steps per sub-slot). Recalibrated once per
day for 10 minutes per sub-slot target.

Difficulty parameter of -th slot. Recalibrated once per day for 32 blocks per slot

Chia
Chia

σ τ μ

Ti

i

spii spii =def

64
Ti

Di i

Variable Definition

target

5.1.2 Step to Epoch

:Number of sub-slots in th slot. Typically but can be larger integer to enforce a
block minimum.

5.1.3 Notation for Points of Interest

To describe the chains it will be convenient to introduce some extra notation. Recall that for
a VDF or VDF chain we denote with or the point steps into the computation.

 is the total number of steps. Sometimes we overload notation and consider to
denote the point at the end of the computation rather than the entire VDF or VDF chain, i.e.,

.

The VDF chains we'll consider (and) will be split into slots where the starting point of a
new slot will always be an infusion point. For a point on such a chain we denote
with

Point Definition

the total depth, i.e., the number of steps of this point since genesis

the depth of this point in the current slot

the depth of this point in its VDF

the value of the VDF chain at this point

a proof certifying the VDF computation up to this point

κi i κ =i 1 16

Chia

τ V τ [t] V[t] t

τ .t, V.t τ , V

τ = τ [τ .t], V = V[V.t]

RC CC

point = V[t]

point.D

point.d

point.t

point.x

point.π

Point Definition

If is an infusion point where some value gets infused, then we denote
with the point before infusion, and with

 the point after infusion

The following points on the VDF chains will be defined

Point Definition

The th challenge chain signage point in the th slot (eq.(6))

The th reward chain signage point in the th slot (eq.(9))

he used as challenge to compute the PoSpace in block

The whose signature is in

The infusion point of into (eq.(10)

The signage point interval is the number of VDF steps between signage points, for the th slot it's

so e.g., the depth of the th signage point in the th slot is . A

block in the th slot will be infused 3 to 4 signage point intervals past its signage point.

The first signage point in a slot is the last signage point after infusion

The th slot starts at total depth

point+
point v

point point =+

VDF.sample(point.x, v)

Chia

cc_sp
i,j j i

rc_sp
i,j j i

cc_sp(β) cc_sp
i,j σ β

rc_sp(β) rc_sp
i,j μrc_sp β

rc_ip(β) β RC

i

spii =def
T /64i

j i rc_sp .d =
i,j cc_sp .d =

i,j j ⋅ spii

i

3 ⋅ spi < i rc_ip(β).d − T rc_sp(β).d < T 4 ⋅ spii

rc_sp =
i+1,0 rc_sp

i,τ ⋅64i

+

i

5.2 The Challenge Chain
The challenge chain is a VDF chain whose data and VDF values we'll denote as

Here is the VDF computation for the th slot. Usually its number of VDF steps is the current
time parameter (and should take 10 minutes to compute), but in exceptional cases it can be an
integer multiple of that as we enforce a 16 block minimum per slot

The value infused at the beginning of slot depends on the first block in slot , we'll
explain how exactly in §5.5.

As the VDF of the th slot is computed by a time lord, they release equidistant points of this
computation called the challenge chain signage points, one every VDF steps or
around seconds

eq.(6)

The point at the end of the slot must also be broadcast as it's required to verify the

VDF, but it's not used as a challenge as it's at the same depth as the first signage point
 of the next slot.

DESIGN CHOICE 1: A CONTINUOUS FLOW OF CHALLENGES

To get the security gains of correlated randomness, we let our PoSpace challenges depend
on only one block (out of around 32) per slot, so there's a fresh challenge every 10 minutes.
At the same time, we want a smooth continuous block arrival time (target is 18.75 seconds)
and the challenge for each block should be revealed around 30 seconds before the block is
infused (not much less to avoid orphan blocks, not much more to limit selfish mining and

rc_sp .D =
i,0 T ⋅

j=1

∑
i−1

j κj

CC

CC = ic , τ , ic , τ , ic , …0 1
CC

1 2
CC

2

τi
CC i

Ti

κ ∈i N

τ .t =i
CC κ ⋅i T typically κ = 1i i

ici i + 1 i

τi
CC i

spi =i T /64i

9.375 = 600/64

cc_sp , cc_sp , … , cc_sp where cc_sp
i,0 i,1 i,τ ⋅64i i,j =def

τ [j ⋅i
CC spi]i

cc_sp
i,τ ⋅64i

cc_sp ←
i+1,0 VDF.sample(cc_sp , ic)

i,τ ⋅64i
i

bribing opportunities). Deriving challenges deterministically from

one initial challenge using a delay function as outline above achieves exactly that.

The reward chain is a VDF chain that the time lords evaluate in parallel to and also has
signage points at the same depth as , i.e., . Before we can define

we first need to explain the content of blocks.

5.3 Trunk Blocks {#S:TB}
Whenever a farmer receives new signage points they first check whether this

points lie on a heaviest chain (cf. the discussion in §1.5) and their VDF proofs verify. If the this is
the case, the farmer checks they can create a winning PoSpace proof. This process will, for a
subset of the plots, produce a PoSpace and some additional value .

Whether this PoSpace is a winning proof is now determined by the time parameter as

eq.(7)

DESIGN CHOICE 2: WHY 32 BLOCKS IN EXPECTATION AND NOT EXACTLY?

With our winning condition we have 32 blocks per slot in expectation depending on a
challenge. We could have used a different design to enforce exactly 32 challenges, but then
it would be impossible to achieve our Objective 1.(c), which asks that whether a plot wins
must depend solely on the challenge.

If a farmer has a winning PoSpace they can produce a block which contains the
foliage block and the trunk block . The actual blocks are more sophisticated than our
description below, but in this writeup we focus on the entries which are absolutely necessary for
functionality and security of the chain and ignore entries which are there for efficiency like weight
proofs for light clients or pooling. They key entries in a valid trunk block

are

cc_sp , cc_sp , …
i,1 i,2

cc_sp
i,0

RC CC

CC rc_sp .d =
i,j cc_sp .d

i,j RC

cc_sp , rc_sp
i,j i,j

σ σ.required_iterations

Ti

winning condition : σ.required_iterations < spi (=i T /64)i

σ β = (β , β)T F

βF βT Chia

β =T (σ, μ)rc_sp

, a proof of space for some plot on challenge

where the proof satisfies the winning condition from eq.(7).

, a signature using the secret key of the plot (so it verifies

under the public-key in the PoSpace) of the signage point in the rewards chain discussed in
the next section.

5.4 The Reward Chain
The reward chain is a VDF chain that time lords compute in parallel to . Like , can
be spilt in a sequence of slots.

While in the th slot just contains a VDF and the value infused at the end, each slot
 of the chain

eq.(8)

is a VDF chain with typically around infused values: around 32 blocks and at the end of the
slot also the and points at the same depth. The signage points are

eq.(9)

Where do Blocks get Infused.

Let be some valid block for challenge , its reward chain infusion

point is then at depth

eq.(10)

As is at most the infusion point is somewhere between 3 and 4

signage points past the signage point it refers to. That means we have somewhere from 28.125 to

σ ← PoSpace.prove(S, cc_sp)
i,j S cc_sp

i,j

σ

μ ←rc_sp Sig.sign(S.sk, rc_sp)
i,j S

σ.pk

RC CC CC RC

RC = RC , RC , …1 2

CC i τi
CC ici

RCi RC

RC =i τ , β , τ , β … , β τ , (ic , τ .y)i,1
RC

1 i,2
RC

2 bi i,b +1i

RC
i i

CC

33 bi

CC iCC RC

rc_sp
i,j =def

RC [j ⋅i spi]i

β =T (σ, μ)rc_sp cc_sp(β)T

rc_ip(β)T

rc_ip(β).d =T rc_sp(β).d +T 3 ⋅ spi +i σ.required_iterations

σ.required_iterations spii

37.5 seconds for a round trip from the time lord who gossips the signage point, to a farmer who
computes and gossips a block, back to the time lord who then infuses the block.

5.5 The Infused Challenge Chain
Recall that the challenge chain is used to create PoSpace challenges, and we want these
challenges to only depend on one block per slot. For this, at the end of the th slot we infuse the
PoSpace from the first trunk block whose signage point is in the th slot into . We don't
simply infuse , but to delay revealing the challenge for as long as possible and make sure it's
buried deep in the chain when revealed, we run a VDF on top of to get the infused challenge
value to be infused as defined in §5.2.

Concretely, the infused challenge of the th slot is the output of a VDF computation

on some challenge and time which are defined as follows.

Let be the first trunk block infused into the th slot past the 3rd signage

point, using notion as in eq.(10)

now the challenge is derived from the PoSpace in this block and the value of at the depth
of its infusion point

the number of steps is the the remaining number of VDF steps in the slot, so the value will
be available at the end of the slot when it's required, but not earlier

SECURITY NOTICE 1: WHY ICC DEPENDS ONLY ON Σ

We only use , not the entire trunk block , to compute the infused

challenge . This is crucial to ensure that the challenges depend only on a single challenge
per slot. Had we infused the entire (as we do into), the challenges would depend on

CC

i

σ βT i CC

σ

σ

ici

i

ici =def
τ .y τ = VDF.solve(x, t)

x t

β =T (σ, μ)rc_sp i RCi

β =T β where j =j min{k : β .d >k 3 ⋅ spi}

x CC

x ← VDF.sample(σ, CC[rc_ip(β).D].y)T

t ici

t = cc_ip .D −
i,0 rc_ip(β).D

σ β =T (σ, μ)rc_sp

ici

βT RC

all blocks (as depends on which infuses all blocks) and we would not get security

against double dipping.

DESIGN CHOICE 3: WHY INFUSING THE FIRST BLOCK?

Recall that by our Objective 1.(a) we want challenges to be only revealed when necessary
and (b) to be immutable once revealed.

While (b) suggest to infuse the first possible block so it's buried once revealed, for (a) it
would be better to use the latest possible block. We go with the first block to achieve (b),
and by running a VDF on top of the block we also achieve objective (a).

DESIGN CHOICE 4: UPPER AND LOWER BOUNDS ON BLOCKS PER SLOT

The target number of blocks per slot is 32, and there's an upper bound of 64 and lower
bound of 16. These bounds make some attacks more difficult. In normal deployment the
number of blocks will be close to its expectation, so these bounds should basically never be
reached. The lower bound is required to bound the efficacy of double-dipping as sketched
in §2.2, while the upper bound is necessary to prevent replotting attacks as explained in
§1.8.3.

OBJECTIVE 2: THE TRUNK IS (ALMOST) UNGRINDEABLE

To prevent grinding, the only decision that influences the trunk should be whether to add a
block or not. We need one exception to this rule: the time-stamps (in blocks in the foliage)
are used to recalibrate the time parameter which determines the numbers of VDFs steps per
slot in the trunk. This gives a minor grinding opportunity, to further limit the usability of this
for attacks, the window used to calibrate the time parameter is not simply the previous
epoch, but shifted back so the relevant time-stamp is already buried deep in the
chain.

OBJECTIVE 3: (ALMOST) ONLY DEPENDS ON THE FIRST BLOCK

To limit the impact of double-dipping we use correlated randomness [BDK+19]). For this the
challenge chain should only depend on the first block in every slot. If this was the case,
this would allow for long-range replotting attacks. For this reason, once every sub-epoch

μrc_sp RC

XXX

CC

CC

https://docs.chia.net/green-paper-references/#BDK19
https://docs.chia.net/green-paper-references/#BDK19

(approx 2h) the rewards chain is infused to the challenge chain.

5.6 The Foliage
Whenever a farmer finds a winning PoSpace they can create a block which
contains the trunk block as discussed above, and a foliage block

which contains the payload of the block (transactions, a time-stamp) and a signature (using
the key as for , cf.§5.3})

that links this foliage block to the chain. It signs the (hashes of the) current trunk block as well
as the foliage block from the last transaction block as discussed below.

While every valid trunk block will typically be infused into (unless the time lord is malicious,
the block arrives too late to be infused or the slot is already at its 64 block upper limit), only a
subset of the foliage blocks are included in the foliage chain for reasons outlined below:

OBJECTIVE 4: BLOCK ARRIVAL VS. CREATION TIME

We want blocks to arrive at a rather high frequency (seconds on average) to achieve
fast confirmation. At the same time we want to give sufficient time (to seconds
between signage and infusion points of a block) for block creation to prevent oprhan
blocks.

OBJECTIVE 5: SEQUENTIAL TRANSACTION BLOCKS

Every block of transactions added must refer to the previous block of transactions. This way
we avoid having to deal with transactions that are invalid due to previous transactions that
were added but were not known to the creator of the current transaction block.

DESIGN CHOICE 5: FOLIAGE

To achieve the above objectives, we let farmers who found a winning PoSpace and can

β = {β , β }F T

βT

β =F {data, μ }F

data

S.sk murc_sp

μ ←F Sig.sign(S.sk, (β , β))T F
′

βT

βF
′

RC

FC

9.375
28.125 37.5

create a block always create a foliage block referring to the last transaction block before the
signage point of their block. The time lord will add the foliage of a block – and thus make
this block a transaction block – if no other transaction block was infused between the
signage and infusion point of that block.

5.7 Fraction of Transaction Blocks
With the above rule, we expect one transaction block every slots, that's one

every seconds and corresponds to of all blocks.

For the interested reader, let us shortly outline how the above is determined. The signage points
of consecutive transactions blocks must be at least 4 points apart as a block with signage point

 is infused somewhere between and . The gap can be bigger than

points if no block is found in response to and potentially more points after that. The

expected number of blocks found for each slot is (32 block target for 64 points). The number
of blocks found for each slot is Poisson distributed with expectation (block target for
points). With this distribution, the expected number of consecutive points with no blocks is

.

+ 4 ≈(
e −10.5

1) 5.54
51.95 36%

rc_sp
i

rc_sp
i+3 rc_sp

i+4 4

rc_sp
i+4

0.5
0.5 32 64

e −10.5
1

6 - Recovering from 51%
Attacks and Dynamic
Availability
In this Section we have a look at two closely related security properties of longest-
chain

https://docs.chia.net/green-paper-references/#BDK19
https://docs.chia.net/green-paper-references/#BDK19

Table 1: Summary of the ability to heal from malicious majority and provide security
under dynamic availability of longest-chain protocols based various proof systems.

6.1 Recovery from Attacks
A key difference between a PoW based longest-chain protocol and a longest- chain protocol
based on an efficient proof system like PoStake or PoSpace is the fact that only the PoW based
chains is guaranteed to recover security once an adversary that controls a sufficiently large
fraction of the resource, even if it's just for a short period. This is sometimes called "a
attack" referring to the fact that in bitcoin an adversary controlling of the hashing power
can break security in pretty much any way they like (they can double spend, get of the
block rewards or censor). We'll stick with this expression even though the fraction of the resource
required to control a chain can be lower than (as mentioned in §1.1, in controlling

 of the space is sufficient).

There's also a key difference between PoStake and PoSpace. By using VDFs in addition to
PoSpace as in we get a chain that d4fic8a chahis exself-eal fg powroriotyW

https://docs.chia.net/green-paper-references/#DKT21
https://docs.chia.net/green-paper-references/#DKT21

contained in a block attached at time , if one waits for blocks on top before considering the
transaction confirmed (for Bitcoin is often suggested), then an adversary can fork the
chain in order to double spend this transaction with good probability if for some with

 we have

eq.(11)

If this holds the adversary can simply start at time to mine a chain in private, and release it at
time . By the first inequality the adversaries chain will be heavier than the honest one with
probability at least , and by the 2nd the honest block added at time will be buried by
blocks with probability , so both hold and we have a successful double spending attack with
probability at least (it can actually be a bit less than that as the two events are
negatively correlated).

To be secure it's not sufficient that no as in eq.(11) exist, but one needs to be "sufficiently
far" from this situation to guarantee that double spending can only happen with some tiny
probability. From the standard Chernoff bound it follows that the probability that a fork starting
at a block added at time and being released at time will be successful (i.e., have higher
weight than the honest chain) is exponentially small in the number of expected honest blocks

 and the square of the honest to adversarial advantage, i.e.,

eq.(12)

6.1.2 Recovering from PoStake Majority

This is in stark contrast to PoStake based longest-chain protocols, where once an adversary gets
hold of keys controlling a sufficiently large amount of stake, security cannot be recovered by the
honest parties without resorting on some external mechanism. The reason is bootstrapping as
discussed in §2.3: an adversary who holds keys which at some point in the chain controlled stake

, can fork at that point and bootstrap a chain to the present that looks as if they had stake
throughout. The issue is aggravated due to "stake-bleeding" [GKR18], which refers to the fact
that the fork can amass additional stake through fees and block-rewards.

t k

k = 6
t , t0 1

t ≤0 t < t1

PoW (t , t) ≥a 0 1 PoW (t , t) and PoW (t, t)/D ≥h 0 1 h 1 k

t0

t1

0.5 t k

0.5
≈ 0.5 =2 0.25

t , t0 1

t0 t1

PoW (t , t)/Dh 0 1

Pr fork starting at t and released at t heavier than honest chain[0 1]

≤ − exp ⋅ − 1(
D

PoW (t , t)h 0 1 (
PoW (t , t)a 0 1

PoW (t , t)h 0 1)
2)

N N

https://docs.chia.net/green-paper-references/#GKR18
https://docs.chia.net/green-paper-references/#GKR18

6.1.3 Recovering from PoSpace Majority

A longest-chain protocol using only PoSpace (like Spacemint [PKF+18]) is basically as bad as
PoStake based protocols when it comes to healing after an adversary got control of a large
amount of the resource. One difference is that in the PoStake case the bootstrapping is only
possible while the adversary holds the space resource, while bootstrapping in PoStake just
requires keys that were valid at some point in the past but can be worthless (i.e., not hold any
stake in the chain currently considered by the honest parties) now. On the positive side, stake-
bleeding is not an issues for PoSpace.

6.1.4 Recovering from Space-Time Majority in
{#S:RPOST}

While a pure PoSpace based longest-chain protocol fails to heal from adversarial majority due to
bootstrapping, by combining space with time as in Chia we prevent bootstrapping, and get a
chain that naturally heals from adversarial majority. Though, what exactly constitutes the resource
in a PoST protocol is less obvious than e.g. in the PoW or PoSpace setting. We already shortly
touched this issue in §1.1. We'll now recap the notion for PoST resources introduced there, but in
a more fine-grained manner using a time parameter to reflect that resources can change over
time. Let

Term Definition

denote the disk space (more precisely, the space with initialised
plots) available to the honest and adversarial parties at time ,
respectively

denote the speed of the (three) VDFs available to the fastest
honest and online time lord at time

denote the speed of the VDFs available to the adversary, the
number of VDFs available to the adversary is unbounded.

SECURITY NOTICE 2: UNLIMITED VDFS

 only considers the fastest honest time lord, as only they matter for the growth of the

Chia

space (t), space (t)h a t

vdf (t)h
t

vdf (t)a

vdfh

https://docs.chia.net/green-paper-references/#PKF18
https://docs.chia.net/green-paper-references/#PKF18

honest chain. The adversary on the other hand is allowed an unlimited number of VDFs of
speed . Not putting any bound here makes the security statements stronger, but it
might seem to give the adversary an unrealistic advantage. This is not really the case as
most of the advantage an adversary can get by using many VDFs (trough double dipping)
can already be achieved by using a fairly low amount of VDFs. So it would hardly make a
quantitative difference if we put a cap on the number of VDFs, say 100, or simply put no cap
at all.

Define the honest and adversarial resource at time time as the product of their space and VDF
speed

and analogously to the work setting let the cumulative space-time resource in a window from
to be

With these definitions we now get a similar bound on the probability that an adversary can create
a fork starting at and being released at time as we did for PoW in eq.(12)

eq.(13)

A difference to the PoW setting is the additional factor boosting the adversary's resource
which is necessary to account for the fact that they can do some bounded double dipping.

Analogously to the PoW case, a block added at time can be considered secure even in a setting
where the adversary can get temporary majority as long as for all where
 is large enough for the block added at time to be considered confirmed at time , the

probability in eq.(13) is small.

6.2 Dynamic Availability

vdfa

PoST (t) =h space (t) ⋅h vdf (t) , PoST (t) =h a space (t) ⋅a vdf (t)a

t0

t1

PoST (t , t) =h 0 1 PoST (t) dt , PoST (t , t) =∫
t0

t1

h a 0 1 PoST (t) dt∫
t0

t1

a

t0 t1

Pr fork starting at t and released at t heavier than honest chain[0 1]

≤ − exp ⋅ − 1(
D

PoST (t , t)h 0 1 (
1.47 ⋅ PoST (t , t)a 0 1

PoST (t , t)h 0 1)
2)

1.47

t

t , t , t <0 1 0 t < t1 t −1

t t t1

A blockchain based on some resource is secure under dynamic availability if it's security
properties hold even if the amount of the resource dedicated towards securing the chain varies
over time as long as at any point in time the honest parties control sufficiently more of the
resource than a potential adversary.

6.2.1 Dynamic Availability for PoW (Bitcoin)

Using notation from §6.1.1, for a PoW based chain that means that for some (that
captures the advantage of the honest parties) and any time we have

eq.(14)

To see that Bitcoin is secure under dynamic availability we can reuse our inequality eq.(12) which
using simplifies to (recall that is the expected number of honest

blocks in the to window)

eq.(15)

Which simply means that the probability that an adversary will be able to create any particular a
fork decreases exponentially in the length of the fork.

6.2.2 Dynamic Availability for PoST ()

Analogously to PoW just outlined, and using notation from §6.1.4 we can define dynamic
availability for PoST as used in by requiring that at any time

eq.(16)

With this eq.(13) becomes

f > 1
t

PoW (t) ≤a f ⋅ PoW (t)h

≥PoW (t ,t)a 0 1

PoW (t ,t)h 0 1 f
D

PoW (t ,t)h 0 1

t0 t1

Pr fork starting at t and released at t heavier than honest chain[0 1]

≤ − exp ⋅ f − 1(
D

PoW (t , t)h 0 1 ()2)

Chia

Chia t

PoST (t) ≤a f ⋅ PoST (t)h

eq.(17)

Thus like in Bitcoin, in the probability of a successful fork decreases exponentially fast in the
length of the fork.

Unlike for PoW, to guarantee security it's not sufficient that , but we need a more
substantial gap in the resources of the honest parties and the adversary to account for double
dipping, for parameters as in is sufficient.

6.2.3 Dynamic Availability from PoSpace {#S:DAspace}

While in we achieve security under dynamic availability by using space and time as a
resource, it's an intriguing question whether a longest-chain blockchain based on proofs of space
alone like Spacemint [PKF+18] could be secure under dynamic availability.

Surprisingly, the answer is a resounding no as shown in [BP22]. They consider a setting where the
chain progresses in steps, where a step happens every time a new challenge is picked. The
adversary can change the amount of space available to the honest parties by a factor with
every step, and the space available to them is always a factor smaller than what the
honest parties have. Moreover the space can be replotted in steps. Their result states that no
matter what chain selection rule is used, in this setting a PoSpace based blockchain can always be
successfully forked by an adversary with a fork of length at most steps. This bound is
tight as a (albeit fairly complicated and thus not practical) chain selection rule achieving this
bound exists.

6.2.4 Dynamic Availability from PoStake

The impossibility from [BP22] just discussed does not translate to proofs of stake based chain as
there's no analogue for replotting in the stake setting. In fact, PoStake based longest-chain
protocols secure under dynamic availability do exist [BGK+18]. The Ouroboros genesis chain
selection rule from this paper works as follows: given two competing chains, one just compares
the chains at a fairly short window right after the fork. Intuitively, the reason such a chain
selection rule does not provide security under dynamic availability for space is because an

Pr fork starting at t and released at t heavier than honest chain[0 1]

≤ − exp ⋅ − 1(
D

PoST (t , t)h 0 1 (
1.47

f)
2)

Chia

f > 1

Chia f > 1.47

Chia

1 ± ϵ

f > 1
R

R ⋅ ϵ/f 2

https://docs.chia.net/green-paper-references/#PKF18
https://docs.chia.net/green-paper-references/#PKF18
https://docs.chia.net/green-paper-references/#BP22
https://docs.chia.net/green-paper-references/#BP22
https://docs.chia.net/green-paper-references/#BP22
https://docs.chia.net/green-paper-references/#BP22
https://docs.chia.net/green-paper-references/#BGK18
https://docs.chia.net/green-paper-references/#BGK18

adversary could use replotting to make this short window have large weight, thus create a
winning chain even with much less space than the honest party.

Footnotes

1. If there's an epoch switch at some where the difficulty switches from to
, let be the weighted average .

t, t <0 t < t1 D0

D1 D D = D +0 t −t1 0

t−t0 D1 t −t1 0

t −t1

References
Identifier Publication

AAC+17

Hamza Abusalah, Joël Alwen, Bram Cohen, Danylo Khilko, Krzysztof Pietrzak, and
Leonid Reyzin. Beyond Hellman’s time-memory trade-offs with applications to
proofs of space. In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in
Cryptology - ASI- ACRYPT 2017 - 23rd International Conference on the Theory
and Applications of Cryptology and Information Security, Hong Kong, China,
December 3-7, 2017, Proceedings, Part II, volume 10625 of Lecture Notes in
Computer Science, pages 357–379. Springer, 2017.

BBBF18

Dan Boneh, Joseph Bonneau, Benedikt Bu ̈nz, and Ben Fisch. Verifiable delay
functions. In Hovav Shacham and Alexandra Boldyreva, editors, Advances in
Cryptology - CRYPTO 2018 - 38th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 19-23, 2018, Proceedings, Part I, volume 10991
of Lecture Notes in Computer Science, pages 757–788. Springer, 2018.

BBF18
Dan Boneh, Benedikt Bu ̈nz, and Ben Fisch. A survey of two verifi- able delay
functions. IACR Cryptol. ePrint Arch., page 712, 2018.

BDK+19
Vivek Bagaria, Amir Dembo, Sreeram Kannan, Sewoong Oh, David Tse, Pramod
Viswanath, Xuechao Wang, and Ofer Zeitouni. Proof- of-stake longest chain
protocols: Security vs predictability. 2019.

BGK+18

Christian Badertscher, Peter Gazi, Aggelos Kiayias, Alexander Russell, and Vassilis
Zikas. Ouroboros genesis: Composable proof-of-stake blockchains with dynamic
availability. In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng
Wang, editors, Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2018, Toronto, ON, Canada, October 15-19,
2018, pages 913–930. ACM, 2018.

BNPW19 Jonah Brown-Cohen, Arvind Narayanan, Alexandros Psomas, and S. Matthew
Weinberg. Formal barriers to longest-chain proof-of-stake protocols. In Anna

Identifier Publication

Karlin, Nicole Immorlica, and Ramesh Johari, editors, Proceedings of the 2019
ACM Conference on Economics and Computation, EC 2019, Phoenix, AZ, USA,
June 24-28, 2019, pages 459–473. ACM, 2019.

BP22
Mirza Ahad Baig and Krzysztof Pietrzak. On the existence of proof of space
longest chain protocols (working title), 2022. 2022. Manuscript in preparation.

CKWN16

Miles Carlsten, Harry A. Kalodner, S. Matthew Weinberg, and Arvind Narayanan.
On the instability of bitcoin without the block reward. In Edgar R. Weippl, Stefan
Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors,
Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, Vienna, Austria, October 24-28, 2016, pages 154–167.
ACM, 2016.

CP19 Bram Cohen and Krzysztof Pietrzak. The chia network blockchain. 2019.

DFKP15

Stefan Dziembowski, Sebastian Faust, Vladimir Kolmogorov, and Krzysztof
Pietrzak. Proofs of space. In Rosario Gennaro and Matthew Robshaw, editors,
Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology Conference,
Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part II, volume 9216 of
Lecture Notes in Computer Science, pages 585–605. Springer, 2015.

DKT21

Soubhik Deb, Sreeram Kannan, and David Tse. Posat: Proof-of-work availability
and unpredictability, without the work. In Nikita Borisov and Claudia Diaz,
editors, Financial Cryptography and Data Security - 25th International
Conference, FC 2021, Virtual Event, March 1-5, 2021, Revised Selected Papers, Part
II, volume 12675 of Lecture Notes in Computer Science, pages 104–128. Springer,
2021.

DW13

Christian Decker and Roger Wattenhofer. Information propagation in the bitcoin
network. In 13th IEEE International Conference on Peer-to-Peer Computing, IEEE
P2P 2013, Trento, Italy, September 9-11, 2013, Proceedings, pages 1–10. IEEE,
2013.

Identifier Publication

EFKP20

Naomi Ephraim, Cody Freitag, Ilan Komargodski, and Rafael Pass. Continuous
verifiable delay functions. In Anne Canteaut and Yuval Ishai, editors, Advances in
Cryptology - EUROCRYPT 2020 - 39th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, May
10-14, 2020, Proceedings, Part III, volume 12107 of Lecture Notes in Computer
Science, pages 125–154. Springer, 2020.

ES18
Ittay Eyal and Emin Gu ̈n Sirer. Majority is not enough: bitcoin mining is
vulnerable. Commun. ACM, 61(7):95–102, 2018.

FZ17
Lei Fan and Hong-Sheng Zhou. iching: A scalable proof-of-stake blockchain in
the open setting (or, how to mimic nakamoto’s design via proof-of-stake). IACR
Cryptol. ePrint Arch., page 656, 2017.

GKL15

Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone
protocol: Analysis and applications. In Elisabeth Oswald and Marc Fischlin,
editors, Advances in Cryptology - EUROCRYPT 2015 - 34th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Sofia,
Bulgaria, April 26-30, 2015, Proceedings, Part II, volume 9057 of Lecture Notes in
Computer Science, pages 281–310. Springer, 2015.

GKR18

Peter Gazi, Aggelos Kiayias, and Alexander Russell. Stake-bleeding attacks on
proof-of-stake blockchains. In Crypto Valley Conference on Blockchain
Technology, CVCBT 2018, Zug, Switzerland, June 20-22, 2018, pages 85–92. IEEE,
2018.

Hel80
Martin E. Hellman. A cryptanalytic time-memory trade-off. IEEE Trans. Inf. Theory,
26(4):401–406, 1980.

Lew21
Andrew Lewis-Pye. Byzantine generals in the permissionless setting. CoRR,
abs/2101.07095, 2021.

LR21 Andrew Lewis-Pye and Tim Roughgarden. How does blockchain security dictate
blockchain implementation? In Yongdae Kim, Jong Kim, Giovanni Vigna, and

Identifier Publication

Elaine Shi, editors, CCS ’21: 2021 ACM SIGSAC Conference on Computer and
Communications Security, Virtual Event, Republic of Korea, November 15 - 19,
2021, pages 1006–1019. ACM, 2021.

Pie19a

Krzysztof Pietrzak. Proofs of catalytic space. In Avrim Blum, editor, 10th
Innovations in Theoretical Computer Science Conference, ITCS 2019, January
10-12, 2019, San Diego, California, USA, volume 124 of LIPIcs, pages 59:1–59:25.
Schloss Dagstuhl - Leibniz- Zentrum für Informatik, 2019.

Pie19b

Krzysztof Pietrzak. Simple verifiable delay functions. In Avrim Blum, editor, 10th
Innovations in Theoretical Computer Science Conference, ITCS 2019, January
10-12, 2019, San Diego, California, USA, volume 124 of LIPIcs, pages 60:1–60:15.
Schloss Dagstuhl - Leibniz-Zentrum fu ̈r Informatik, 2019.

PKF+18

Sunoo Park, Albert Kwon, Georg Fuchsbauer, Peter Gazi, Joël Alwen, and
Krzysztof Pietrzak. Spacemint: A cryptocurrency based on proofs of space. In
Sarah Meiklejohn and Kazue Sako, editors, Financial Cryptography and Data
Security - 22nd International Conference, FC 2018, Nieuwpoort, Cura çao,
February 26 - March 2, 2018, Revised Selected Papers, volume 10957 of Lecture
Notes in Computer Science, pages 480–499. Springer, 2018.

PS17

Rafael Pass and Elaine Shi. The sleepy model of consensus. In Tsuyoshi Takagi
and Thomas Peyrin, editors, Advances in Cryptology - ASIACRYPT 2017 - 23rd
International Conference on the Theory and Applications of Cryptology and
Information Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part II,
volume 10625 of Lecture Notes in Computer Science, pages 380–409. Springer,
2017.

SNM+21
Caspar Schwarz-Schilling, Joachim Neu, Barnab é Monnot, Aditya Asgaonkar,
Ertem Nusret Tas, and David Tse. Three attacks on proof-of-stake ethereum.
IACR Cryptol. ePrint Arch., page 1413, 2021.

SSZ15
Ayelet Sapirshtein, Yonatan Sompolinsky, and Aviv Zohar. Optimal selfish mining
strategies in bitcoin. CoRR, abs/1507.06183, 2015.

Identifier Publication

Wes20
Benjamin Wesolowski. Efficient verifiable delay functions. J. Cryptol., 33(4):2113–
2147, 2020.

Additional Reading
• How to Store a Permutation Compactly by Bram Cohen and Dan Boneh

https://hackmd.io/@dabo/rkP8Pcf9t
https://hackmd.io/@dabo/rkP8Pcf9t

A - Building Blocks: PoSpace,
VDFs and Signatures
In this section we sketch the main building blocks used in the blockchain: unique digital
signatures, proofs of space [DFKP15; AAC+17] and verifiable delay functions [Pie19b; BBBF18;
Wes20]. The definitions are not fully general, but instead tailored to the particular constructions
of PoSpace from [AAC+17] and the VDFs [Pie19b; BBBF18; Wes20] based on sequential squaring.

A.1 (Unique) Digital Signatures
A digital signature scheme is specified by three algorithms; a (probabilistic) key-generation
algorithm , a signing algorithm and a verification algorithm

. We assume the standard security notion (unforgeability under chosen message
attacks) and perfect completeness, that is, a correctly generated signature will always verify:

 uses signatures in the foliage (to chain foliage blocks and to bind them to the trunk) and
also in the trunk (so only the farmer can compute the challenge). To avoid grinding attacks, the
signatures used in the trunk must be unique, that is for every (this includes maliciously
generated public keys) and message there can be at most one accepting signature

A.2 (Unique) Proofs Of Space

A.2.1 Algorithms for PoSpace

A proof of space is specified by the four algorithms given below

Chia

Sig.keygen μ ← Sig.sign(sk, m)
Sig.verify

∀m,

where

Pr[Sig.verify(pk, m, μ) = accept] = 1

(pk, sk) ← Sig.keygen ; μ ← Sig.sign(sk, m) .

Chia

pk

m

∀pk, m, (Sig.verify(pk, m, μ) = accept) ∧ (Sig.verify(pk, m, μ) =′ accept) ⇒ (μ = μ) .′

PoSpace.init

https://docs.chia.net/green-paper-references/#DFKP15
https://docs.chia.net/green-paper-references/#DFKP15
https://docs.chia.net/green-paper-references/#AAC17
https://docs.chia.net/green-paper-references/#AAC17
https://docs.chia.net/green-paper-references/#Pie19b
https://docs.chia.net/green-paper-references/#Pie19b
https://docs.chia.net/green-paper-references/#BBBF18
https://docs.chia.net/green-paper-references/#BBBF18
https://docs.chia.net/green-paper-references/#Wes20
https://docs.chia.net/green-paper-references/#Wes20
https://docs.chia.net/green-paper-references/#AAC17
https://docs.chia.net/green-paper-references/#AAC17
https://docs.chia.net/green-paper-references/#Pie19b
https://docs.chia.net/green-paper-references/#Pie19b
https://docs.chia.net/green-paper-references/#BBBF18
https://docs.chia.net/green-paper-references/#BBBF18
https://docs.chia.net/green-paper-references/#Wes20
https://docs.chia.net/green-paper-references/#Wes20

on input a space parameter (where is some set of valid parameters) and
a unique identifier (we use to denote the identifier as in it will be the public key

of a signature scheme) outputs1

Here is the large file of size the prover needs to store. We also keep
 as part of as it will be convenient.

on input and a challenge outputs a proof

Here is the actual proof, the other entries in are just convenient to keep around.

on input a proof outputs or

We assume perfect completeness

A.2.2 Security of PoSpace

We will not give the formal security definition for PoSpace here, but informally it states that an
adversary who stores a file of size significantly less than bits should not be able to produce a
valid proof for a random challenge unless he invests a significant amount of computation (ideally
close to what it costs to run the full initialization). Moreover it must be
impossible to amortize space, that is, initializing space for different identities must
require times as much space.

N ∈ N N ⊂ Z+

pk pk Chia

S = (S.Λ , S.N = N , S.pk = pk) ← PoSpace.init(N , pk)

S.Λ ∣S.Λ ∣ ≈ N

N , pk S

PoSpace.prove

S c ∈ {0, 1}w

σ = (σ.π , σ = σ.N = S.N , σ.pk = S.pk , σ.c = c) ← PoSpace.prove(S, c)

σ.π σ

PoSpace.verify

σ accept reject

PoSpace.verify(σ) ∈ {reject, accept} .

∀N ∈ N , c ∈ {0, 1} , Pr[PoSpace.verify(σ) = accept] = 1 where w

S ← PoSpace.init(N , pk) and σ ← PoSpace.prove(S, c)

N

PoSpace.init(N , pk)
m > 1

m

To prevent grinding attacks, we need our PoSpace to be unique as defined below.

A.2.3 Unique PoSpace

A PoSpace is unique if for any identity and any challenge there is exactly one proof, i.e.,

We call a PoSpace weakly unique if the expected number of proofs is close to , i.e.,

For weakly unique PoSpace we assume that whenever there is more than one proof for a given
challenge which passes verification, outputs all of them.

The [AAC+17] PoSpace used in is only weakly unique. To be able to focus on the main
challenges, we will nonetheless assume a unique PoSpace when analyzing but our analysis
can be extended without major difficulties to handle weakly unique PoSpace, things just get a bit
more messy.

A.2.4 The [AAC+17] PoSpace

We give a very high level outline of the PoSpace from [AAC+17]. The space parameter is given
implicitly by a value , the actual space required is approximately bits (e.g.
for that's terabytes). Let denote the set of bit strings. Below we
denote with the bit prefix of a string .

The identity together with a hash function defines two functions
 as

Note that if we model as a random function, then are also random functions. On a
challenge the prover must answer with a tuple

pk c

∀N , pk, c,

{σ : PoSpace.verify(σ) = accept ∧ (σ.N , σ.pk, σ.c) = (N , pk, c) } = 1∣ () () ∣

1

∀N , pk, c,

E ∣{σ : PoSpace.verify(σ) = accept} ∧ (σ.N , σ.pk, σ.c) = (N , pk, c) ∣c←{0,1}w [() ()]

≈ 1

PoSpace.prove(S, c)

Chia

Chia

ℓ ∈ Z+ N ≈ ℓ ⋅ 2 ⋅ 2ℓ

ℓ = 40 10 L := {0, 1}ℓ ℓ
X∣ℓ ℓ X

id := pk H f : L → L, g :
L × L → L

f(x) = H(id, x) and g(x, x) =∣ℓ
′ H(id, x, x) .′

∣ℓ

H f , g

y ∈ L

https://docs.chia.net/green-paper-references/#AAC17
https://docs.chia.net/green-paper-references/#AAC17
https://docs.chia.net/green-paper-references/#AAC17
https://docs.chia.net/green-paper-references/#AAC17

if it exists. In this construction, for roughly a fraction of the challenges
 there will be at least one proof, and the expected number of proofs is (so it is a weakly

unique PoSpace).

The prover will generate and store two tables so they can efficiently generate proofs. They first
compute and store a table with the values sorted by the 2nd entry. With this table, the
prover can now efficiently enumerate all tuples where and to
generate a table containing all triples ; the expected number of such triples
is . This table is then sorted by the thrid value. Now given a challenge one can
efficiently look up proofs in the second table as it is sorted by the values. Storing the second
table requires bits, and this can be brought down to
bits by encoding it in a more clever way.

 is based on this PoSpace, but to further minimize the effect of time/space trade-offs (where
a malicious farmer tries to save on space at the cost of doing more computations), a nested
version of this construction is used. We omit the details in this writeup.

A.3 Verifiable Delay Functions
The definition of verifiable delay functions (VDFs) given below is not completely general, but
makes some additional properties of VDF we'll need in explicit. In particular, we want a VDF
where the sequential computation can start before we know the number of sequential steps for
which it will run, while still being able to output proofs reasonably fast at any point during the
sequential computation. This similar to the functionality provided by continuous
VDFs [@Ephraim2020], which require that one can provide proofs for intermediate values almost
immediately. We can allow some slack, and thus can use "normal" practical VDF constructions.
We'll use the following notation to an (ongoing or finished) VDF computation

 the challenge (usually one or more unpredictable values) used for this VDF

 total number of sequential steps performed

For we let denote the state of the VDF after sequential steps, and

 denotes the value after steps.

id, (x, x) where x =′  x , f(x) =′ f(x), g(x, x) =′ ′ y

(1 − 1/e) ≈ 0.632 y ∈
L 1

(x, f(x))
(x, x)′ x = x′ f(x) = f(x)′

(x, x , y =′ g(x, x))′

∣L∣ = 2ℓ y

y

≈ 3∣L∣ log(∣L∣) = 2 ℓℓ+1 ≈ 2∣L∣ log(∣L∣)

Chia

Chia

τ

τ .c ∈ {0, 1} :∗

τ .t ∈ N :

i : 0 ≤ i ≤ τ .t τ [i] i

τ [i].x ∈ X : i

 is a proof certifying that is correctly computed.

We'll denote the value and proof for the last value as

The functions defining a VDF are

on input a challenge samples the initial value and outputs a partial VDF value

 the function doing one step of the sequential computation

on input a challenge and time parameter outputs a proof

and runs in (not much more than) sequential steps (what a step is depends on the
particular VDF). Here is the output and is a proof that has been correctly
computed. For convenience we also keep as part of .

on input outputs or .

Verifying must be possible in steps, for existing VDFs verification just takes
[Pie19b] or even constant [Wes20] time.

We have perfect completeness

τ [i].π : τ [i].x

τ .y =def
τ [τ .t].x τ .π =def

τ [τ .t].π

VDF.sample

c ∈ {0, 1}∗ x

τ .t := 0 , τ [0].x := x , τ .c := c

VDF.next

X → X

VDF.solve

c ∈ {0, 1}∗ t ∈ Z+

τ = (τ .y , τ .π , τ .x , τ .c = c , τ .t = t) ← VDF.solve(c, t)

t

τ .y τ .π τ .y
(c, t) τ

VDF.verify

τ accept reject

VDF.verify(τ) ∈ {reject, accept}

≪ t log(t)

https://docs.chia.net/green-paper-references/#Pie19b
https://docs.chia.net/green-paper-references/#Pie19b
https://docs.chia.net/green-paper-references/#Wes20
https://docs.chia.net/green-paper-references/#Wes20

The two security properties we require are

uniqueness: It is hard to come up with any statement and an accepting proof for a wrong
output. More precisely, it is computationally difficult to find any where for

 we have

Note that we only need (but not) to be unique, i.e., the proof showing that is
the correct value can be malleable. This seems sufficient for all applications of VDFs, but let us
mention that in the [Pie19b; Wes20] VDFs discussed below also is unique.

sequentiality: Informally, sequentiality states that for any , an adversary who makes less than
 sequential steps will not find an accepting proof on a random challenge. I.e., for some tiny

Let us stress that is only bounded by the number of sequential steps, but they can use high
parallelism. Thus the VDF output cannot be computed faster by adding parallelism beyond what
can be used to speed up a single step of the VDF computation.

A.3.1 The [Pie19b, Wes20] VDFs

The VDFs proposed in [Pie19b; Wes20] (see [BBBF18a] for an overview of those constructions) are
both based on squaring in a group of unknown order, for concreteness let the group be
where is the product of two large primes . On input one would
first map the challenge on a group element, say as , and the output is

 with . This can be computed by squaring sequentially times
, and it is conjectured that there is no shortcut to this

computation if one doesn't know the factorization of .

The VDFs from [Pie19b; Wes20] differ in how the proof that certifies that is
defined. The proof in [Pie19b] is shorter (vs. elements), but soundness of the proof
requires an additional assumption (that taking random roots is hard).

If one uses an RSA group as above, a trusted setup or a multiparty computation is needed to

∀t, c : VDF.verify(VDF.solve(c, t)) = accept

τ ′ τ ←
VDF.solve(τ .c, τ .t)′ ′

VDF.verify(τ) =′ accept and τ .y = τ .y .′

τ .y τ .π τ .π τ .y

τ .π

t A

t ϵ

Pr[VDF.verify(τ) = accept ∧ τ .c = c ∧ τ .t = t : c ←rand {0, 1} , τ ←w A(c, t)] ≤ ϵ

A

ZN
∗

N = pq p, q VDF.solve(c, t)
c x :=c hash(c) mod N

(y, π) y = x modc
2t

N y xc t

x →c x →c
2 x →c

22
⋯ → xc

2t

N

π y = x modc
2t

N

1 log(T)

https://docs.chia.net/green-paper-references/#Pie19b
https://docs.chia.net/green-paper-references/#Pie19b
https://docs.chia.net/green-paper-references/#Wes20
https://docs.chia.net/green-paper-references/#Wes20
https://docs.chia.net/green-paper-references/#Pie19b
https://docs.chia.net/green-paper-references/#Pie19b
https://docs.chia.net/green-paper-references/#Wes20
https://docs.chia.net/green-paper-references/#Wes20
https://docs.chia.net/green-paper-references/#BBBF18
https://docs.chia.net/green-paper-references/#BBBF18
https://docs.chia.net/green-paper-references/#Pie19b
https://docs.chia.net/green-paper-references/#Pie19b
https://docs.chia.net/green-paper-references/#Wes20
https://docs.chia.net/green-paper-references/#Wes20
https://docs.chia.net/green-paper-references/#Pie19b
https://docs.chia.net/green-paper-references/#Pie19b

sample the modulus in a way that nobody learns its factorization. As this sampling is
expensive, one would then think of as a public parameter to be used indefinitely.

Wesolowski [Wes20] suggests using the class group of an imaginary quadratic field as the
underlying group of unknown order. These groups can be obliviously sampled -- this means
given random bits one can sample a group without learning its order -- and thus there is no need
for a trusted setup. On the other hand, it's somewhat tricky to obliviously sample random group
elements in class groups (here obliviously means in a way that does not reveal the discrete log of
the element). Thus in the class group setting we can let sample a fresh group using
the challenge , and then exponentiate a fixed easy to find group element (concretely the
element (a=2, b=1)). This is the approach taken in .

Footnotes

1. The first constructions of PoSpace from [DFKP15] were based on depth-robust graphs. The
initialization phase in these PoSpace was not just a function as it is here, but an interactive
protocol. The definition we give here captures the [AAC+17] PoSpace (which was developed
for) where the initialization phase is non-interactive, this makes its use in a blockchain
design much simpler. The Spacemint [PKF+18] proposal is using graph-based PoSpace and
because of that must bootstrap the blockchain itself to make initialization non-interactive:
farmers must post a commitment to their space to the blockchain via a special type of
transaction before it can be used for farming. Without this, Spacemint would succumb to
grinding attacks (on the message send to the verifier during the initialization phase).

N

N

VDF(c, t)
c

Chia

Chia

https://docs.chia.net/green-paper-references/#Wes20
https://docs.chia.net/green-paper-references/#Wes20
https://docs.chia.net/green-paper-references/#DFKP15
https://docs.chia.net/green-paper-references/#DFKP15
https://docs.chia.net/green-paper-references/#AAC17
https://docs.chia.net/green-paper-references/#AAC17
https://docs.chia.net/green-paper-references/#PKF18
https://docs.chia.net/green-paper-references/#PKF18

